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The Hurst exponent (H) is widely used to quantify long range dependence in time series data
and is estimated using several well known techniques. Recognizing its ability to remove trends
the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a Hurst exponent in
non-stationary data. Mutifractional Brownian motion (mBm) broadly encompasses a set of models
of non-stationary data exhibiting time varying Hurst exponents, H(t) as against a constant H.
Recently, there has been a growing interest in time dependence ofH(t) and sliding window techniques
have been used to estimate a local time average of the exponent. This brought to fore the ability of
DFA to estimate scaling exponents in systems with time varying H(t), such as mBm. This paper
characterizes the performance of DFA on mBm data with linearly varying H(t) and further test the
robustness of estimated time average with respect to data and technique related parameters. Our
results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t) from time
series data.

I. INTRODUCTION

Statistical properties such as trends and correlations of complex phenomena are important in the study of non-
equilibrium phenomena such as extreme events.. Due to the non-equilibrium nature of complex driven systems, general
statistical analysis tools cannot be readily applied to them. Long range dependence (LRD) in data is a key feature [1]
and is studied in data from diverse physical systems such as temperature records, river flows, heart beat variability,
space weather etc., [2]-[11].

Rescaled range analysis (R/S ) [12] and fluctuation analysis (FA) [13] are statistical tools developed to estimate
the variability of time series through estimation of Hurst exponent, H [14], a statistic which is directly related to
the scaling in autocorrelation functions, and, also to the fractal dimension of the time series data. While the scaling
exponent, H, is equal to 0.5 for uncorrelated white noise, many natural systems demonstrate values close to 0.7 [15].

These techniques, however, fail to estimate H in non-stationary data. More recently, Detrended Fluctuation
Analysis (DFA) [16], which is widely considered a better technique than either R/S or FA due to its capability to
detrend a time series data while estimating H, making it viable for non-stationary systems. With increased use of DFA
technique, its limitations in detrending capabilities are evident [17] and there is need for better alternative detrending
schemes for data with atypical trends e.g., trends that are not addressable by polynomial detrending [18].
Inspite of its purported shortcomings, DFA is recognized as an efficient Hurst exponent estimation technique because
it utilizes detrending to estimate over lesser number of averages than FA.

Fractional Brownian motion (fBm), a generalization of Brownian motion, is a quintessential theoretical model for
the Hurst effect [19]. Since its discovery, there has been an interest in modeling physical systems as fBm. However,
it was quickly realized that imposing a uniform H over the span of the data is in fact a restricting condition as
uniform level of LRD in real life data is uncommon. Multifractional Brownian motion (mBm) is a generalization of
fBm relaxing this condition [20], allowing for variable degrees of self-similarity with non-stationary increments i.e.,
H varies as H(t) over the time span of the data. It should be realized that mBm is also multifractal in nature due
to multiple fractal dimensions in the system within the time span of the data. Tunability of its local regularity is a
valuable property of mBm, realizing which there has been increased interest in modelling various geophysical systems
as mBm [21] [22] [23].

Although there is increasing use of DFA as a technique to study LRD in time series data, it is widely recognized
that it yields a single Hurst exponent, and thus can not distinguish between multi-fractal and mono-fractal systems,
e. g., between mBm and fBm. In fact most systems exhibit time varying H exponent, but the estimates yield a
constant value. Further, previous studies show the effect of data size used on the Hurst exponent [24, 25], thus
requiring caution in the interpretation of the estimated values. This is in direct agreement with our study of effect
of data size on the Hurst exponent estimated by DFA in mBm data as seen in section IV B. Other schemes such
as Multi Fractal Detrended Fluctuation Analysis (MF-DFA) were proposed [26], though such techniques address the
multifractal nature of time series with respect to one fractal dimension at a time and do not provide a solution
with respect to estimating the time varying fractal structure of mBm. It is apparent that DFA and other similar
techniques were assumed to locally estimate a time averaged Hurst exponent [27] [28]. This assumption underlies
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estimator techniques with sliding windows. We believe the success of estimating such a time average depends on the
assumption of local linearity of the Hurst exponents, and is analyzed in detail in section III.

Using mBm data generated from linearly varying Hurst exponents, H(t), we show that DFA in fact estimates the
time average of H(t) and test the dependence of estimated exponent on various data and technique related parameters.
The primary motivation for our study is to establish a bench mark for the performance of DFA in estimating a time
averaged Hurst exponents from mBm data, and, identify its limits.

Sections II and III introduce preliminary ideas of LRD, fBm, mBm, and, DFA, and, establish our estimation
methodology. The main results of the study and conclusions follow in sections IV and V, respectively.

II. FRACTIONAL/MULTIFRACTIONAL BROWNIAN MOTION

Long Range Dependence (LRD), commonly identified as self-affinity, self-similarity, or long-range persistence, is
a statistical property of time series data where the rate of decay of its autocovariance is slower than exponential,
and most commonly a power law. This property is usually quantified using the Hurst exponent H (also known as
the Hölder exponent), which is measured using R/S or the fluctuation analysis (FA) technique for stationary data.
The Hurst exponent, H ∈ (0, 1) with increasing value implying increasing LRD, and 0.5 as the threshold where the
correlations are completely absent.

Fractional Gaussian noise (fGn, which is stationary in nature) is proposed as a model for data with LRD and
fractional Brownian motion (fBm) (its non-stationary counterpart) is its corresponding Wiener process generated
using fGn as its incremental process. A continuous time fractional Brownian motion (fBm), BH(t) with Hurst
exponent H is a Gaussian process with zero-mean and is H-self affine i.e.,

BH(λt) ∼= λHBH(t),∀ λ > 0 (1)

Also, its covariance varies by definition as [30],

cov[BH(t1), BH(t2)] =
1

2
(|t1|2H + |t2|2H − |t1 − t2|2H) (2)

Thus, H characterizes the relative smoothness of the resulting Brownian motions. It can also be seen that when
H = 1/2 and t1 > t2, cov[BH(t1), BH(t2)] = t2, thus it is a Wiener process (Brownian motion). However when
H > 1/2, then the increments are positively correlated and when H < 1/2, the increments are negatively correlated.
This means that we have a smooth long-term correlated time series data for when H > 1/2 and anti-correlated data
for when H < 1/2. The increments in a fBm is fractional Gaussian noise (fGn) as seen in Equation 3, and is stationary
in nature.

GH(t) = BH(t+ 1)−BH(t) (3)

A problem with fBm is that although they capture the self-similarities well, the pointwise irregularity given by the
constant Hurst parameter, H, is invariant in time. This restricting condition can be over come by generalizing fBm
to a broader class of Brownian motions where the local irregularity is given by a time varying Hurst exponent, H(t),
known as multifractional Brownian motion (mBm). In order to simulate data with such properties, a time series
BH(t) of an fBm with a Hurst parameter, H(t) at time t is generated and a time series WH(t) is computed to be equal
to BH(t) by interpolation. Each of the fBms can be generated using many methods. In our simulations, we applied
the method of circulant matrices [31] to generate each of such fBms with different Hurst exponents. Producing
an fBm with a stationary fGn as its incremental process (as in Equation 3) requires a method to filter a typical
Gaussian noise of low frequency components to produce a covariance as described in Equation 2 using fourier filtering
technique. Circulant matrices, which are diagonalized by a discrete fourier transform allow for faster solutions for
linear equations that contain them by fast fourier transform [32]. Subsequently, the field of fBms are interpolated
by a krigeage method [33]. The method of kriging predicts intermediate value of a function at a given point by
computing a weighted average of the known values of the function in the neighborhood of the point, as against a
piecewise-polynomial spline, which based on smoothness may not produce the most likely values for intermediates.
This method is known to be reliable in simulating discrete time mBm [34] [35].

III. ESTIMATION OF TIME AVERAGED HURST EXPONENT BY DFA

Detrended Fluctuation Analysis (DFA) is extensively used for analyzing LRD in time series data, particularly those
with non-stationarities [36]. In this technique, a random walk is created using the time series as is usually done in
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FIG. 1: Simulated data with various forms of H(t) with the incremental process, mGn shown in upper panel and the corre-
sponding mBm in bottom panel. In (a), H1(t) = c = 0.75. In (b), H2(t) = at+ b with a = 10−5 and b = 0.7 i.e., 〈H〉act = 0.75
and R = 0.1. In (c), H3(t) = H2(t) + εt with εt drawn from normal distribution, N (0, σ2) such that σ = 〈H〉act × 10−3. It is
interesting to note the differences in variability in mGn resulting in differences in LRD natures of mBm.

FA, however its departure from traditional fluctuation analysis method arises due to the simultaneous detrending
operation performed using a polynomial of known order (p) which is locally fit within a time window of fixed size.
DFA, thus consists of the following steps: the time series data X(i) of length N is first shifted by its mean 〈X〉 and
its cumulative sum calculated as

Y (j) =

j∑
i=1

[X(i)− 〈X〉] (4)

This cumulative sum series, Y (j) is now segmented into time windows of different lengths ∆T , yielding a collection
of set of random walks of varying sizes. These random walks are detrended within the windows by locally estimating

their trends as best fit polynomials of order p, Y
(p)
∆T (j). These trends are now removed by subtracting them from the

cumulative sum data and the resulting fluctuations, generally referred to as fluctuation functions are calculated as
the mean squared deviations:

F (p)(∆T ) = (
1

N

N∑
j=1

[Y (j)− Y (p)
∆T (j)]2)

1
2 (5)

If the data X(i) have long-range correlations, it would be reflected in the fluctuation functions F (p)(∆T ), with a
power-law:

F (p)(∆T ) ∝ (∆T )α (6)

The scaling exponent α is calculated (from scaling within DFA) by best fit of log-log plot between F (p)(∆T ) and
window size ∆T using linear regression performed by least squares method. This scaling exponent, α, is related to
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the Hurst exponent H as: α = H for fGn and as, α = H + 1 for fBm because fBm is the cumulative sum or the
integral of fGn. DFA technique applied with a detrending of pth order polynomial is commonly referred to as DFAp.

We characterize the performance of DFA on systems with time varying H exponents using simulated mBm data
with linearly varying H(t) in time. The choice of linear H(t) is motivated by the consideration that its time variation
will be gradual, and, the system can be treated as piece-wise local linear (in Hurst exponents). This allows one to
divide the data into segments in which a time averaged Hurst exponent can be estimated under the local linearity
assumption. It should be noted that piece-wise linearity forms the basis for earlier studies [28]. Further, we analyzed
systems with a potential seasonal variation in Hurst exponents using mBm data with sinusoidally varying H(t) as the
standard model [29]. The results of the time averaged Hurst exponent estimated by DFA technique were found to be
in accordance with results from linearly varying H(t). That is, robustness of H estimated by DFA for mBm data with
a sinusoidally varying H(t) was found to depend on the amplitude and the frequency (of H(t)). More specifically,
increasing the amplitude or frequency of the sinusoidal variation was found to deteriorate the quality of H estimated
by DFA. This can be explained by the effect of slope of linear H(t) on the quality of exponent estimated by DFA
as seen in section IV C. Hence, results from linearly varying Hurst exponents can be used to explain results for any
other form of H(t) in real life data by using local linearity arguments.

We used Monte Carlo simulations to study the performance of DFA when applied to mBm data, which is simulated
with H(t) = at + b over a time length t = 1 to T using the data simulation method described in section II. The
parameters a and b are chosen to control the range of H(t) = R = max1≤t≤T H(t)−min1≤t≤T H(t), and, its mean =
〈H〉act. This condition relates various parameters as:

a = R
T−1 ,&

b = 〈H〉act − R
2 −

R
T−1

(7)

The time series of the mBm is shown in Figure 1. When H1(t) = 0.75, the mGn corresponding to respective mBm
demonstrates uniform variability as expected. For H2(t) = at + b with a = 10−5 and b = 0.7 i.e., 〈H〉act = 0.75 and
R = 0.1, we see that with increasing t, H increases resulting in decreasing variance in mGn data thus resulting in
increasing LRD in mBm data when compared to the case in 1(a). In Figure 1(c), for H3(t) = H2(t) + εt with εt
drawn from normal distribution, N (0, σ2) such that σ = 〈H〉act × 10−3, we see that due to noise in H3(t) data, the
variance shows no regular pattern in mGn and that is reflected in the LRD pattern in mBm. These figures show
us qualitatively the difference in the nature of LRD within data with different forms of H(t). If we had no a priori
knowledge of the time varying nature of a data’s Hurst exponent,the differing degrees of LRD between data would
be viewed assuming a uniform exponent. Similarly, a single Hurst exponent estimation technique such as DFA would
measure the time averaged exponent, denoted as 〈H〉est which would be equal to 〈H〉act under the ideal condition of
R = 0 (or a = 0). In fact, this assumption constitutes the central hypothesis of this paper.

While measuring for 〈H〉est using DFA, we apply linear regression between logarithm of fluctuation function
(F (∆T )) and logarithm of the time window (∆T ), specifically the method ordinary least squares to find the best-fit
slope and the standard error of least squares slope [37]. Since we assume DFA measures a uniform exponent in the
course of this paper, we measure the slope over logarithmically equi-spaced values of time windows, ranging from
∆T = 10 to b T10c (the integer rounded floor value) to eliminate spurious curvatures at lower time windows and also
have certain minimum number of samples to obtain the relavent averaged fluctuation function at higher time windows.
We denote the standard error as SE(〈H〉est) (shown in error bars in the following figures) which gives us the precision
in 〈H〉est estimated by the DFA technique. Furthermore, error of estimation of 〈H〉act is measured in terms of relative
error of estimation as:

EE(〈H〉est) =
|〈H〉est − 〈H〉act|

〈H〉act
(8)

For some of the sections, we perform ensemble averaging and the resulting 〈H〉est is an average slope over all the
ensembles and so is the standard error.

All the following computations were performed on a MATLAB 7.8 platform.

IV. ANALYSIS OF DFA PERFORMANCE

The ability of DFA to yield H values intrinsic to a system was tested using the data of mBm. The most basic of
such tests is to study how close 〈H〉est is to 〈H〉act. It is expected that 〈H〉est would be sensitive to various parameters
pertaining to the technique and of the data. Some of such basic parameters are: p the order of the polynomial, T the
length of the data, R the range of H(t), and, possible noise in H(t).

We begin our numerical experiments by first testing to see if 〈H〉est = 〈H〉act whilst simultaneously observing the
sensitivity of 〈H〉est to p of DFA.
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FIG. 2: Dependence of 〈H〉est on the polynomial order (p) of DFAp used. The actual average values (〈H〉act) are shown in red.
R = 0.06 for all H(t) used and T = 213 = 8192. We see p = 1 has higher EE compared to other cases.

A. Time averaged Hurst exponent and its dependence on the order of detrending polynomial, p

The first studies are designed to test how well a single exponent 〈H〉est computed with DFAp represents 〈H〉act of
the mBm data. For our numerical experiment, we chose mBm data with 〈H〉act values ranging from 0.4 to 0.9 (steps
of 0.05) with R = 0.06. This value of R is chosen to assure that we have mutifractional Brownian data with a certain
minimum varying degree of self-similarity and for other reasons as described in section IV C. The simulations are
performed on mBm of size T = 213 = 8192 for one ensemble of the data with no ensemble averaging. This length of
the data is chosen keeping in mind the nature of dependence of 〈H〉est on T (discussed in the next section) and also
to standardize the computational time.

Figure 2 shows the dependence of 〈H〉est on 〈H〉act for various detrending polynomial orders (p) of DFAp used.
For p = 1, ..., 5, DFA yields exponents close to 〈H〉act, albeit with varying accuracy. For each 〈H〉est, from a DFA of
order p, we see that there is no regular pattern of increasing/decreasing accuracy with increasing 〈H〉act. This also
concurs with our expectation that for a fixed R, the extent of LRD as measured by 〈H〉est should not be dependent
on 〈H〉act of the data.

But for every 〈H〉act, we see significant differences with in 〈H〉est from various p. This is expected since lower
polynomial orders (p = 1, linear) fit worse than higher orders because detrending using a linear fit on non-stationary
data is expectedly worse, but this comes with a caveat that this is not necessarily so for higher order polynomials
due to poor conditioning, particularly for lower time windows. This may explain why we see that while p = 1 results
in higher error (lower accuracy) as compared to higher order p, there is no definite trend or difference in error for
p = 2, 3, 4, 5. So, in the following studies, we use p = 2, i.e., a quadratic detrending which is also the most commonly
used order.

To further settle on which length of data is appropriate within available computational resources, we proceed to
test the effect of T on 〈H〉est in the next section.

B. Dependence on data size, T

Although this is not a strict condition, it is important to examine the data size effects on 〈H〉est. This prompted us
to set up the next experiment where we took various mBm data for which 〈H〉act = 0.75 and R = 0.06 but of differing
size T . Figure 3 shows this dependence of 〈H〉est and the SE(〈H〉est) on the size of mBm data (T ) used. Just like
in the previous case, our result is for one ensemble of the data and so, there was no averaging. We fixed 〈H〉act, to
make our point in a more clear fashion as showing different 〈H〉act would confuse one and may make it hard to see a
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FIG. 3: Dependence of 〈H〉est on the length of data used for 〈H〉act = 0.75 and R = 0.06. It is interesting to note that while
increasing data size has no predominant effect on EE, it does improve the quality of performance or decrease the SE as shown
by error bars.

clear pattern in 〈H〉est.
We see that while longer data sizes do not necessarily effect the accuracy (difference between blue points and the

reference line in red in Figure 3), it does improve the quality of estimation as seen by decreasing error bars- measured
by SE(〈H〉est). So, we fixed the length of the data to be T = 213 = 8192 for further simulations to assure lower SE.

The results so far help establish a benchmark on p and T , using which we can perform further tests. In the next
section, we answer an important question: how R would effect 〈H〉est?

C. Dependence on range R of H(t)

This result is important because in the assumption of a local linear H(t), one would like to know how the slope
of the linearly varying H(t) as measured by R for fixed T and for each 〈H〉act, would effect 〈H〉est. To test this
particular effect, we measure EE(〈H〉est) for data with a 〈H〉act (ranging from 0.4 to 0.9 in steps of 0.05) and R
(values ranging from 0 to 0.1 in steps of 0.02). This accuracy is plotted on a contour map as shown in Figure 4. The
simulations were performed for 100 realizations of mBm data, each of size T = 8192 and 〈H〉est is estimated using
DFA with detrending order p = 2. Hence, the resulting EE is an average over all the 100 ensembles.

The ensemble averaging is used mainly because our results for a single sample of data were inconclusive. However,
a clearer picture emerged as we averaged over several such ensembles. Our results show that there is a generally
decreasing trend in accuracy (increasing EE) with increasing R. This is in line with what we expect when R (or the
slope a) increases with constant data size T , worsening performance (or increasing EE) of DFA in estimating 〈H〉act
is expected intuitively. This argument is based upon the premise that when we enforce through the technique to
estimate a single exponent from a data with a spread of exponents, we are actually averaging all the different possible
Hurst exponents. With increasing R, the spread in various possible exponents, or the standard deviation increases
and results in worsening accuracy as we are essentially trying to fit a broadly distributed (and possibly skewed) set
of exponents to a narrow Gaussian distribution. This results in worsening accuracy, and, we stop the simulations at
R = 0.1 as this is the point where in general the accuracy starts to fall below 95% or EE ≥ 5% (as seen in ratio in the
contour colormap in Figure 5). We chose to use 5% as the limiting condition so as to standardize the benchmarks.
Although it might sound arbitrary, this is a meaningful assumption because data that result in higher EE would
typically show non-convergent behavior in their respective fluctuation plots for DFA, making it almost look like there
are scaling crossovers which is a different phenomena altogether. Also, this result motivated us to use R = 0.06 for our
simulations in sections IV A, IV B and IV D since for this value of R, although the data is multifractional in principle,
with accuracy in estimation over 98% for most 〈H〉act, the data looks unifractional in the view of the DFA technique.



7

FIG. 4: Contour map showing the dependence of relative accuracy of estimation (legend shown in color map on the right) on
〈H〉act and R. We see interesting features emerging from this picture in that data with 〈H〉act ≥ 0.75 have predominantly lower
EE compared to other cases, and, R = 0.06 serves as a transition point where EE increases rapidly beyond 2% approaching
5% near R = 0.1.

There is another interesting result in Figure 4 which was not discussed in Figure 2: with increasing 〈H〉act, over all
R, the EE(〈H〉est) is in general decreasing till 〈H〉act = 0.75 and then remains relatively invariant thereafter. This
is interesting because it contradicts our earlier conclusion on the dependence of 〈H〉est on 〈H〉act (section IV A). It
can be reasoned out that with increasing 〈H〉act, as the level or correlations i.e., extent of LRD is increasing, DFA
could do a better job estimating 〈H〉act with a threshold occuring at 〈H〉act = 0.75. However, this is an interesting
phenomenon because data with H ≥ 0.7 is known to show predominant LRD behavior than the condition H ≥ 0.5.
In data with 〈H〉act ≥ 0.75, and, R ≤ 0.1, the H(t) ≥ 0.7, which might imply a change in intrinsic nature of the
data as speculated previously [38] when compared with when 0.5 ≤ H(t) ≤ 0.7. This intriguing behavior needs more
research and attention beyond the scope of the current paper. This motivates us to use 〈H〉act = 0.75 for cases in
sections IV B and IV D as this has minimum estimation error over all R, as seen in Figure 5.

In the following section, we intend to answer an interesting question- How robust is the DFA with respect to the
presence of noise in linear H(t)?

D. Dependence on noise in H(t)

The robustness of DFA in the presence of noise is analyzed using a linear H(t). We simulate mBm data using
H(t) = at+ b+ εt, where εt is drawn from Normal distribution (N (0, σ2)), and, a and b are the same as before. We
control the strength of additive noise using parameter κ such that the standard deviation, σ = 〈H〉act × κ = 0.75× κ
for 〈H〉act = 0.75 and R = 0.06. Other parameters, p = 2 and T = 8192 are the same as before and we average over
100 realizations of the data for each case.

From the results in Figure 5, we see that 〈H〉est is very sensitive to κ, particularly to those values greater than
10−3 beyond which the relative accuracy falls far below the 5% limit of EE. We can see the threshold with respective
to the reference green line which represents 95% of 〈H〉act. It is interesting to note that while it is expected to have
worsening performance with increasing κ, the rate of loss of accuracy for κ ≥ 10−3 is very high and goes to show how
sensitive 〈H〉est is to noise in H(t).
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FIG. 5: Dependence of 〈H〉act on the strength of Gaussian noise (N (0, σ2)) added to H(t), represented here by κ = σ×〈H〉est.
We note how rapidly EE increases, well beyond the 5% limit (as shown in green line) as the strength increases beyond 10−3.

V. CONCLUSION

The characteristics of DFA in computing Hurst exponents from a non-stationary data with varying degrees of self-
similarity (or LRD) are analyzed using mBm data. This is motivated mainly by increased use of DFA for real-life
data, which more often than not is multifractional or with varying H [39] [40] [41] [42]. We set out with a basic and
intuitively meaningful assumption that the estimated exponent within reasonably slowly varying H(t) is an average
over time. This was shown to be true through numerical experiments on synthetic mBm data.

Furthermore, analysis of the effects of data and technique related parameters on the estimated exponent yielded
some interesting insights and benchmarks for application of DFA on mBm. The following are the main conclusions
on the usage of DFA technique for computing H(t) using sliding window estimation or just estimate a time averaged
Hurst exponent:

1. The order of polynomial, p used for detrending in DFAp has a limited and expected effect on our estimation
as we see that even though mBm data is non-stationary, the non-stationarity is of a relatively simple kind and
can be conveniently addressed by a lower order polynomial such as quadratic (p = 2). Application of DFA with
p > 2 on mBm (and in general any data) should be done with caution due to poor conditioning of the higher
order polynomial- more so in the lower time windows of estimation.

2. Data size (particularly greater than 211) does not predominantly affect the estimated exponent, although it
would in general effect the precision (or standard error of least square fitting), more so due to limited number
of averages performed in estimating the variance for fluctuation functions.

3. The range of the data, R which for a fixed data size controls the slope of H(t) has a major effect on the accuracy
of estimation. We find that R = 0.06 i.e., H(t) = 〈H〉act − R

2 → 〈H〉act + R
2 is a limiting condition for various

data irrespective of 〈H〉act. This conclusion is drawn on a 5% tolerance in EE as the limiting condition.

4. Increasing strength of additive noise diminishes the accuracy of estimation for obvious reasons. However, it
is interesting to note how sensitive estimated exponents are with respect to the strength of noise. For a 5%
tolerance in accuracy, we would desire that H(t) have no more than 〈H(t)〉 × 10−3 as standard deviation in
noise. A noise of greater strength would quickly degrade the accuracy of the estimated exponents.

Beyond our observations on the nature of estimated exponents, we could also see a peculiar behavior of how DFA
does a better job of estimating the time average of exponents when the data is predominantly self-similar (H(t) ≥ 0.7).
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This phenomenon although interesting would require further study.
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