A New Paradigm in Sources and Physics of High-Power Ionospheric Modification

> Dennis Papadopoulos University of Maryland College Park

Invited Review 20th Annual RF Ionospheric Interactions Workshop April 27-30, 2014, Arecibo, Puerto Rico

AFOSR FY MURI TOPIC #13 A New Paradigm in Sources and Physics of High-Power Ionospheric Modification

Background

- The Ionosphere controls the performance of critical DoD & civilian systems [Communications range, radar, navigation, Geo-location accuracy, etc]
- DoD/civilian active research using traditional ionospheric heaters provided new capabilities and applications that allow control/exploitation of triggered processes (Virtual antennas in space, artificial clouds, irregularity control,...)
- The low power of traditional heaters resulted in large arrays and active elements, with complex and costly controls leading to fixed installations
- Fixed locations are associated with fixed magnetic geometry limiting the scope of the research investment

The Challenge

- Utilize new concepts of metamaterials active nonlinear materials operated at high power microwave (HPM) devices to replace the current large collection of sources used in traditional heaters with a single, mobile, and cheap high-power amplifier at the required HF frequencies
- Mobile inexpensive sources will revolutionize the science and operations of ionospheric modification

Objective

- Assemble team of physicist and engineers from space science , ionospheric modification (IM), plasma modeling and HPM to re-examine the coupling of EM energy to the ionosphere under different geomagnetic latitudes and conditions
- Outline research program to :
 - Determine the key properties of the EM source (frequency, ERP, Power, waveform, phase, modulation,..)required to explore EM-Plasma coupling and other the critical physics questions as a function of geomagnetic location and ionospheric conditions
 - Define and design modern, efficient, powerful, tunable EM sources for IM and provide hardware testing under typical university HPM laboratory conditions (vacuum loads and/or anechoic chamber)
 - Develop theoretical tools and framework to design feasibility experiments to demonstrate and test the results of the IM research.

The MURI Consortium - Expertise

* MURI PI

Team Members

UMD SPP

Dennis Papadopoulos Gennady Milikh Xi Shao Alireza Mahmoudian Bengt Eliasson

<u>Students</u> Aram Vartanyan Chris Najmi Kate Zawdie Blagoje Djordjevich

Texas Tech

Andreas Neuber John Mankowski James Dickens Joel Perez, technician Lee Waldrep, machinist

Students

Daniel Mauch, David Thomas, Paul Gatewood

UCLA

Walter Gekelmann George Moralles Yuhou Wang

UMD CPB

Thomas Antonsen John Rodgers Brian Beaudoin Tim Koeth

Students

Kiersten Ruisard Dmytro Kashyn

<u>Advisors</u> Simon London Irv Haber Edward Wright

Examples of Investigations

MUF at 1-2 GHz – Learning to control the irregularity spectrum at Super Small Size (few cm) scales at equatorial and mid-latitudes and use it to create Field Aligned Scattering (FAS) mirrors

C3 Artificial Ionization

Bi-static Early CME Monitoring

Virtual Antennae in Equator

Application	Region	Frequency	Power	ERP	Polarization
Virtual Antenna	Equator	4-10 MHz	>1MW	>75dBW	O,X
FAS SSS clouds for GHz ground-to-	Equator	4-12 MHz	>2 MW	>85dBW	
ground channel	Mid latitude				
Artificial Plasma Layers	Mid latitude	4-12 MHz	>2 MW	>85dBW	O, X
CME detection	Mid-latitude	10-30MHz	>2 MW	>85dBW	0
Substorm effects	Polar	4-8 MHz	>2 MW	>80dBW	O, X

UMD SPP Objectives

- Identify and Explore the Ionospheric Modifications (IM) Physics Areas impacting the design of Mobile Ionospheric Heating sources (MIHs) where
 - No heating experiments were performed (e.g. equatorial regions)
 - Heating experiments were performed using low power heaters (e.g. mid-latitude)
 - Important new high latitude experiments with incomplete or controversial understanding (e.g. artificial ionization)
 - New concepts requiring mobile sources (e.g. monitor Coronal Mass Ejections)
- Design and, in collaboration with UCLA, conduct PoP experiments of the new physics concepts
- Collaborate with the Arecibo, HAARP, SURA and EISCAT experimental programs
- Provide design input to the source development teams

Principle of ELF Generation

BAE SYSTEMS

AURORAL MAGNETIC GEOMETRY

В

Electric Field and Current Structure in the Dip Equator

 σ_P conductivity along E (Pedersen) $\sigma_H\,$ conductivity across E and B (Hall)

BAE SYSTEMS

E_x~.5-.7 mV/m

 $j_z = -\sigma_H E_x + \sigma_P E_z = 0$

 $E_z = (\sigma_H / \sigma_P) E_x$: for $(\sigma_H / \sigma_P) = 20$ field amplification, $E_z = 10-15$ mV/m

 $j_x = \sigma_c E_x$, eastward j_x known as COWLING current $\sigma_c = [(\sigma_H / \sigma_P)^2 + 1] \sigma_P \rightarrow COWLING$ conductivity

Typical equatorial structure has a Cowling current j_x of 8-12 A/km² and a vertical electrical field of 10-15 mV/m

Equatorial ELF/VLF Generation and Propagation

Equatorial vs. Auroral ELF/VLF Source

Engineering Equivalents

Auroral, T-guide

Equatorial, Coupled-guides

Other Advantages of Equatorial ELF/VLF

Fig. 27. Vertical profiles of positive ion composition for noontime [uatorial equinox conditions and average solar activity. (Figure is Figure 3-9 (U) Electron Density Profiles from [Barr and Stubbe, 1984] om Forbes [1975].)

- SMALL SELF ABSORPTION FOR HF
- WAVE-GUIDE TOP AT HIGHER ALTITUDE
 - BETTER INDUCTIVE COUPLING TO WAVE-GUIDE
 - NO ELF/VLF ABSORPTION

Equatorial Model

Conductivity Perturbation

Evolution of Horizontal Current

Evolution of Vertical Current

UPPER HYBRID – ELECTRON HEATING – AIT Modeling

FRANZ ET AL.: RADAR SCATTERING FROM FIELD-ALIGNED IRREGULARITIES

Figure 2. The k_{\perp} spectrum of the data plotted in Figure 1. The dashed line superimposed on the k_{\perp} spectrum is our model (equation (1)). This figure has been corrected for an error in perpendicular velocity used in a similar figure by *Kelley et al.* [1995].

Figure 3. A prediction of the scattering cross section for infinitely field-aligned irregularities. The cross section has been normalized to A_{\perp} and R where A_{\perp} is the radar volume projected onto the plane perpendicular to **B** and R is the range to target.

STEC:

- L1/L2 ~1.2->1.6 GHz
- λ~ 18-20cm
- Striations < λ /2 scatter STEC

Instabilities

Raising MUF to GHz

Fig. 1: Schematic of SSS FAS system at GHz.

FAS Concept- Aspect scattering. RF transmitted from Tx along the 90° line are orthogonal to FAI and will be observed everywhere at the 90° line. Tx located in the 92° line observed at 88° and vice versa

Cathode Window Window Probe Helium Ball valve Z Probe

FIG. 1. Schematic of the experimental setup (not to scale). The plasma is formed by a pulsed discharge ($I_d \approx 3.5$ kA) between the anode and cathode which are 52 cm apart. The plasma has a duration of 10 ms, is reproducible and pulsed at 1 Hz. The probe drive moves probes to each point on the preprogrammed planar *x*-*y* grid, and can be positioned at different axial locations. Microwaves are launched into the radial density gradient, across the background field **B**₀. The center of the plasma is optically thick to the microwaves.

Drive

Van Campenolle et al., 2006

Combining lab exp with modeling

FIG. 5. Radial profile of $|E|^2$ for the *O* mode and *X* mode, at 1.5 kG. The density profile is overplotted. These radial profiles were used to obtain the location of the peak $|E|^2$ with respect to plasma density, as displayed in Figs. 6 and 7.

FRONTIER IM TOPICS VIRTUAL ANTENNAE AT ELF/VLF

Return Current Problem

M≈IL(δ/H)

M≈IL(h/H) h>>δ

Virtual Antenna: Drive currents on the top of the ionosphere

VIRTUAL ANTENNA - CURRENT MODULATION (PEJ)

Equatorial vs. Auroral ELF/VLF Source

Engineering Equivalents

Auroral, T-guide

Equatorial, Coupled-guides

VIRTUAL ANTENNA – IONOSPHERIC CURRENT DRIVE (ICD)

MAGNETOSONIC

 $M_o \approx 4 \times 10^9 A - m^2$

ICD Scaling with Geomagnetic Latitude

ICD Scaling with Geomagnetic Latitude

$$\begin{split} M_{eff} &\approx ILh \approx (\Sigma EL)Lh \\ M_{eff}(\lambda) &\approx (4 \times 10^9) [\frac{\Sigma(\lambda)}{5S}] (\frac{P_{HF}}{3.6MW})A - m^2 \approx \\ &\approx (2.4 \times 10^8) \Sigma(\lambda) (P_{HF} / MW)A - m^2 \end{split} \qquad \begin{array}{l} \text{For } \mathsf{P}_{\mathsf{HF}} = 800 \text{ kW we get} \\ \mathsf{M}_{eff} \approx 10^{11} \text{ A-m}^2 \text{ at } \lambda \approx 0 \\ \mathsf{M}_{eff} \approx 3 \times 10^{10} \text{ A-m}^2 \text{ at } \lambda \approx 6^\circ \end{split}$$

Parameters allow us to consider an equatorial barge basing of the HF transmitter

Barge or Shipboard Option

Strawman HF Array

- HF frequency 5-8 MHz
- Linear polarization
- Power on ship or selfpropelled platform

• Can provide strategic and tactical sub communications

ELF Mobile Array Performance

- Optimal area for Mobile Array along Magnetic Equator (green band, within 2° from dip equator)
- Power requirements depend on location
 - Example: Korea Yellow Sea
 - 800 KW system can provide data rates in the tens of bit/sec
 - Signal as large as 5 pT at 40 Hz or more at range of 3500 km
 - Typical background noise at 40-80 Hz is 200-500 fT/Hz^{1/2}

Texas Tech Photoconductive Sources - PCSS

New Sold And Sold And And And And And And And And And An	 Background Switch geometry Material parameters and modification Electron irradiation Annealing Laser enhanced diffusion Triggering Wavelengths Other switch design parameters
Project Objectives Development of a compact, high voltage (10-25 kV) photoconductive switch capable of ~ 10 MHz operation at ~1-2 MW	 Demonstrated Performance Blocking of DC electric fields up to 700 kV/cm Maximum switched current of 1kA at 30 kV Switched 250 A at 20 kV at a burst repetition frequency of 65 MHz

Texas Tech- PCSS

Challenges

- Device Efficiency
 - Recombination at defect sites
 - Mid-gap defect sites
 - Surface Recombination
 - Contact resistance
- Device Lifetime
 - Space charge effects
 - Current density at SiC/metal interface

Characterization of Defect States

- Thermally stimulated current spectroscopy (TSC)
- Extraction of trap parameters from experimental IV curves and simulation fitting
- Sub-bandgap IR illumination at cryogenic temperatures

Device Lifetime

- Vary current density, record any changes in switch properties (V-I curve)
- Simulation (Silvaco Atlas)
 - Joule heating
 - Space charge effects
 - Hole mobility
 - Transient trapping effects
- AFM / SEM analysis of failed devices
- Sub-contact doping effects

Texas Tech Electrically Small Antennas

Project Objective

Design and simulate an electrically small antenna for the 2 - 10 MHz range capable of high power applications

Approach

- •Simulate and optimize the design in HFSS for the operational frequency range
- •Consider physical limits (electric breakdown)

•Build a scaled version of the design for operation around 100 MHz

Design Goals

- Electrically small a few meters in size
- High power Megawatt output
- Instantaneous bandwidth a few percent
- Tuning adjust resonant frequency with structural modification

Current Issues

- Tradeoff between size and bandwidth - Resonant structure
- High field on surface of dielectric - Limits input power
- Losses in the dielectric
 - Increase bandwidth, decrease efficiency

Future

• Evaluate magnetic materials (ferrites)

UMD Charged Particle Beam Group Multi-beam Inductive Output Tube (MBIOT) R&D Program

Goal: Design, develop and demonstrate a high power MBIOT operating as a class D amplifier.

Advantages of Pulse Modulation:

Simplifies driver circuitry Improves phase/frequency control Enhanced efficiency

Technical Challenges:

Grid- beam interception and heat load Cavity tuning over 3 octaves while maintaining matched R/Q Guide field uniformity Output matching

Device Concept

Electron gun w/ coaxial grid-cathode geometry

- RF frequency, phase and amplitude are pulse modulated
- Pulse Width \rightarrow AM
- Pulse Period \rightarrow FM
- Pulse Timing \rightarrow Phase

System Challenges - What might a more compact system look like?

ITER and Compact are not usually mentioned in the same sentence

ICRH System: 2 antennas, 20 MW/each, 40-55 MHz

IC H&CD Antenna SYSTEM

Messian et al, Nucl. Fusion 2010.

AFOSR FY MURI TOPIC #13 A New Paradigm in Sources and Physics of High-Power Ionospheric Modification

Background

- The Ionosphere controls the performance of critical DoD & civilian systems [Communications range, radar, navigation, Geo-location accuracy, etc]
- DoD/civilian active research using traditional ionospheric heaters provided new capabilities and applications that allow control/exploitation of triggered processes (Virtual antennas in space, artificial clouds, irregularity control,...)
- The low power of traditional heaters resulted in large arrays and active elements, with complex and costly controls leading to fixed installations
- Fixed locations are associated with fixed magnetic geometry limiting the scope of the research investment