
Generation and evolution of intense ion cyclotron turbulence

by artificial plasma cloud in the magnetosphere

Gurudas Ganguli,1 Leonid Rudakov,2 Manish Mithaiwala,3

and Konstantinos Papadopoulos4

Received 6 November 2006; revised 29 January 2007; accepted 6 March 2007; published 16 June 2007.

[1] It is shown that intense ion cyclotron turbulence can be induced in the near-Earth
space by shaped release of neutral gas of materials such as lithium, cesium, etc. Release
of 1 ton of neutral lithium gas in the Earth’s equatorial plane at L = 2 can introduce about
30 GJ of energy which can be used to excite waves around the lithium ion cyclotron
harmonics that readily evolves into the turbulent state. The energy is obtained by
converting the orbital kinetic energy of the neutral lithium atoms into free energy for the
electromagnetic waves through photoionization and creation of a ring distribution in
the lithium ion velocity perpendicular to the ambient magnetic field. This distribution
function is highly unstable and can spontaneously trigger large amplitude shear Alfven
waves near lithium cyclotron harmonics with unique nonlinear properties. These waves
lead to pitch angle scattering of the trapped electrons in a broad energy band.

Citation: Ganguli, G., L. Rudakov, M. Mithaiwala, and K. Papadopoulos (2007), Generation and evolution of intense ion cyclotron
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1. Introduction

[2] Turbulence in a multispecies plasma is not only of
interest to basic plasma physics but also has practical impor-
tance because it determines the general plasma state in space.
It can affect the composition and dynamics of the plasma
constituents and hence is a key factor in the determination of
space weather which is critically important to the reliability
of space assets. Consequently, low-frequency turbulence in
space plasmas has been extensively studied [Onishchenko et
al., 2003; Voitenko and Goossens, 2005; Shukla and Stenflo,
2005; Mikhailovskii et al., 1989], but the understanding of
ion cyclotron turbulence is not as developed despite its
importance to the near-Earth environment [Meredith et al.,
2003; Summers and Thorne, 2003; Summers et al., 1998;
McClements et al., 1994]. An effective way to investigate the
properties of ion cyclotron turbulence in the near-Earth
environment is to use it as a laboratory to seed the turbulence
and closely monitor its evolution and signatures.
[3] In this article, we discuss the concept and feasibility of

seeding ion cyclotron turbulence by neutral gas release in the
magnetosphere perpendicular to the local magnetic field. Our
analysis and estimates indicate that it is possible to induce
intense ion cyclotron instability in a large volume in the near-
Earth environment. The waves generated are the highly oblique
(k? � kz, where k? and kz are the wave vectors across and

along the ambient magnetic field, respectively), short
wavelength shear Alfven waves amplified around harmo-
nics of the ion cyclotron frequency of the injected species.
The energy of these waves resides mostly in the sloshing
motion of the ions, making them quasi-electrostatic in
nature. An important nonlinear process is found to be the
coalescence of two such short wavelength plasmons into a
long wavelength plasmon with k? � kz. This nonlinear
evolution converts the quasi-electrostatic waves into electro-
magnetic waves with interesting implications, especially for
pitch angle scattering of trapped relativistic electrons. The
coalescence process is the reverse of the decay of a long
wavelength plasmon into two short wavelength plasmons
recently discussed by Voitenko and Goossens [2005].
[4] The experiment we propose is based on release of an

easily ionized vapor (such as lithium, cesium, etc.) from a
satellite traversing the magnetospheric region of interest,
such as the radiation belt. As we shall show, this procedure
would result in the formation of a plasma cloud, and the
plasma contained therein is far from thermodynamic equi-
librium, with an anisotropic and population-inverted veloc-
ity distribution that is highly unstable to the spontaneous
growth of large-amplitude waves. The free energy contained
in this plasma is drawn directly and efficiently from the
orbital kinetic energy which is greater by many orders of
magnitude than the energy that could conceivably be
supplied to waves by any electrically driven antenna in
space [Inan et al., 2003]. This concept grows out of the
extensive experimental and theoretical studies, over several
decades, of ionizable chemical releases in the magneto-
sphere [Brice, 1970; Bernhardt, 1992; Giles et al., 1995]
and more recent studies of electromagnetic turbulence in a
multispecies plasma [Ganguli and Rudakov, 2004, 2005;
Rudakov and Ganguli, 2005]. There has been interest since
the 1970s in the use of chemical releases to enhance the
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growth of waves indigenous to the magnetosphere, such as
the whistlers [Brice and Lucas, 1971; Cuperman and
Landau, 1974; Ganguli et al., 1984]. However, the present
scheme is fundamentally different in that it envisions design-
ing the local ion distribution through shaped release of
neutral gas and drawing on the free energy of the artificially
created plasma cloud to grow the necessary waves. In the
following, we first discuss the proposed method of seeding
the waves around lithium ion cyclotron frequency harmonics
in themagnetosphere and then discuss its linear and nonlinear
evolution and observable signatures such as enhanced pre-
cipitation of relativistic electrons. Some of the details are
reserved for the appendices. Figure 1 provides a schematic
overview of the essential processes involved.

2. Neutral Gas Release Induced Turbulence at
Low Altitudes

[5] Our objective is to seed electromagnetic lithium
cyclotron turbulence with properties suitable for nonlinear
phenomena, such as wave-wave coupling, pitch angle
scattering, etc., in the low-altitude region where the ambient
plasma b (= 8pnkT/B2) is low. This may be achieved by
creating a plasma with a ring distribution of perpendicular
velocities [McClements et al., 1994] and/or an anisotropic
distribution with v? > vz for most ions. Now we show how
this can result from the release of an ionizable gas and
examine the stability in such a plasma.

2.1. Creation of Plasma With a Ring Ion Velocity
Distribution

[6] We first consider how the release of neutral gas from a
satellite leads naturally to the formation of plasma with a
ring and anisotropic ion distribution. Such distributions are

in fact known to be created by shuttle exhaust in the
ionosphere [Bernhardt and Sulzer, 2004; Bernhardt et al.,
1998] and also in the comet tails [Hizanidis et al., 1988;
Shapiro et al., 1993]. Several release scenarios are possible.
We consider vaporized lithium release from nozzles on a
satellite body directed perpendicular to the trajectory of the
satellite in equatorial orbit at the desired altitude as shown
schematically in Figures 2a and 2b. The lithium gas jets are
continuously injected from K nozzles over a release period
tR and with a release speed VR with respect to the satellite.

Figure 1. A schematic of the chain of key processes. The green and the blue color represent the input
energy and the resulting signatures, respectively, whereas red represents the formation of the plasma
steady state. The black dashed line represents a possibility currently under research.

Figure 2a. A schematic of the neutral lithium gas injection.
The gas is released radially normal to the satellite trajectory in
the Earth’s equatorial plane where the ambient magnetic field
is perpendicular to the satellite trajectory. With a release
speed ofVR� 1 km/s, it is possible to create a lithium cloud of
widthDL� 1 (i.e., 6000 km) which can be photoionized into
a plasma cloud.
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The satellite orbital speed is Vs. Thus a cloud of neutral
lithium will be formed whose center of mass will follow the
satellite around its orbit. The dimension of the conical
neutral cloud from each jet at time t will be R = VRt along
the jet and 2Rsin(8/2) in diameter, where 8 is the total
angular spread of the jet in vacuum and is assumed to be
small (see Figure 2b). The atoms in the neutral cloud are
photoionized over the characteristic ionization time Ti. For t
� Ti, a quasi steady state will be established in which the
conical neutral cloud structures of size Rmax = VRTi formed
by K nozzles move with the satellite velocity. If Nn neutral
atoms are released continuously over a period tR by all the
nozzles, then the rate per nozzle is Nn/KtR. The quasi-
stationary neutral cloud density nn at a given radial distance
from the satellite R � Rs, where Rs is the satellite
dimension, can be found by equating the neutral flux from
a nozzle, nnVRpR

2sin2(8/2), to Nn/KtR. For large R, the
neutral density falls off rapidly as exp(�R/Rmax) because of
ionization. Thus the density of the neutrals at any position
R � Rs can be estimated to be nn = Nnexp(�R/Rmax)/
KVRtRpR

2sin2(8/2).
[7] As the neutral cloud follows the satellite trajectory, the

atoms are ionized and become attached to a magnetic field
line. Consequently, they can no longer move across the field
lines. They form a plasma with ring distribution in velocity
space which is unstable to electromagnetic waves as dis-
cussed in section 2.3. At any given point, the plasma is
formed over the average duration of tp = Rsin(8/2)/Vs when
the neutral cloud is resident at this point. The lithium ions are
slowed down because of the lithium-hydrogen collision with
frequency nLi�H thereby leading to thermal dissipation of the

energy. This can reduce the free energy available to sustain
the waves. In addition to the Coulomb collisions, the wave-
generated anomalous collision can also have a stabilizing
effect on the waves. Including these collision effects, the
instantaneous lithium ion density nLi which supports the
instability is determined by

dnLi

dt
¼ nn

Ti
� nLi�HnLi � nanLi; ð1aÞ

where na is the anomalous collision frequency associated
with the wave-particle interactions. Solving equation (1a)
with the neutral density in jets described above, the lithium
ion density actively supporting the instability at the end of
the plasma formation time at t = tp is found to be

nLi ¼
Nn

KVRtRpR2 sin2 8=2ð Þ
exp �R=Rmaxð Þ

nTi
1� exp �ntp

� �� �
:

ð1bÞ

Here n 
 na + nLi�H. From equation (1b), it can be shown
that the maximum number of active lithium ions available to
support the turbulence are located at the radius R1 such that
ntp(R1) � 1. Thus most of the energy will be released at R1.
[8] The deposited plasma thus occupies a swath along the

trajectory of the satellite, gradually falling off in density as the
neutral gas source is depleted. This plasma will have no mean
flow velocity. However, all the lithium ions are created with a
large velocity in the equatorial plane. After spinning up around
the magnetic field B, this leads to a narrow distribution of ion
velocities perpendicular to B, centered just below Vs. We
approximate the lithium ion distribution function by

f0 ¼
1

2pð Þ3=2v2t?vtz
exp � v? � Vsð Þ2

2v2t?
� v2z
2v2tz

 !
: ð2Þ

The perpendicular energy E? = mLiVs
2/2, which is equal to

the injection energy, and vtz, vt? << Vs initially. For lithium
ions (Li7) released at the satellite speed Vs = 7 km/s, the
injection energy per ion is equal to 2.8 � 10�12 ergs, which
corresponds to E? � 1.75 eV.
[9] The distribution function of the newly formed ions is

both highly anisotropic and annular in the transverse velocity.
Both of these features are known to drive plasma instabilities.
The anisotropy factor q
 E?/Tz, where Tz is the temperature
along the magnetic field, vastly exceeds typical values of
order 1.5–3 in the ambient radiation belts [Kennel and
Petschek, 1966]. This annular distribution leads to particu-
larly robust instabilities, since the entire ion distribution
drives the unstable wave, rather than only a small selection
of ions whose velocity is in resonance with the wave. As we
shall show in section 2.3, this distribution leads to instability
of the highly oblique shear Alfven waves near the lithium
cyclotron harmonics.

2.2. Estimate of Lithium Ion Density

[10] To be more specific, we target the volume of space
between L = 1.5–2.5 as the region of interest in which to
localize the turbulence and use the conditions at L = 2 for
making estimates. The ambient magnetic field here is B =
0.04 G, ion (mainly hydrogen along with a small quantity of
helium) and electron temperatures are roughly 0.3 eV
during night and 0.5 eV during day, hydrogen density

Figure 2b. A schematic of the cross section perpendicular
to the satellite motion. Rs is the satellite dimension. Shown
here are four nozzles injecting conical jets of neutral lithium
with velocity VR perpendicular to the satellite motion. The
nozzles operate simultaneously and continuously until all
neutrals are released. The number of nozzles (K) may be
altered if needed.
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nH = 3 � 103/cc, and b = 4 � 10�5. Consider the release of
1 ton of lithium which corresponds to 1029 neutral lithium
atoms. Since we want most of the energy introduced by the
release to be channeled into the waves and turbulence, we
must minimize the loss of energy due to thermalization
by lithium-hydrogen collision. This may be achieved by
ensuring that the plasma formation time at a given point
does not exceed the thermalization time, 1/nLi�H � 165 s.
We shall see in section 3 that nonlinear wave-wave
coupling is a prominent feature of the evolution that
competes with wave-particle interactions. Hence the time-
scale (na

�1) associated with wave-particle interaction is not
the linear growth time (g�1) as in a quasi-linear model but
much longer making g > na. This, along with our choice of
tp � 1/nLi�H, leads to the hierarchy g > na > nLi�H.
Although na = gnLi�H with g > 1, the exact value of g can
only be determined by numerical simulation which is beyond
the scope of this article. To estimate nLi, we assume that the
wave-particle interaction is twice as fast as the thermaliza-
tion, i.e., g = 2 so that n = 3nLi�H � 1/55 s�1, but a different
value of g can be accommodated by adjusting the number of
nozzles K, sin(8/2), tR, etc., to ensure the desired magnitude
of nLi. To estimate the average lithium density at Rmax/2, we
choose K = 4, VR = 1 km/s, sin(8/2) � 0.25, tR = 5 � 103 s,
and tp = (Rmax/2)sin(8/2)/Vs. For ntp = 1, equation (1b)
yields the lithium ion density in jets which is active in
supporting the waves to be nLi � 100/cc. Since the back-
ground hydrogen density at L = 2 is nH � 3000/cc, the ratio
nLi/nH � 0.03. Note that the total lithium density, which
includes the ring distribution and the thermalized compo-
nents, i.e., nLi

Total = nntp/Ti, is larger.
[11] When ionized, the 1029 atoms of ejected lithium with

1.75-eV energy each introduces a net energy of approxi-
mately 30 GJ into the medium which corresponds to an
average power of 10 MWover the lithium ionization time of
3000 s. This is an enormous source of energy, and it is to be
emphasized that this energy derives directly and efficiently
from the orbital kinetic energy, not from any electrical or
chemical energy source carried on the vehicle. If even a
fraction of this energy is converted into electromagnetic
turbulence, it would lead to large amplitude electromagnetic
waves with easily observable signatures. In the following
section, we examine and quantify the characteristics of the
turbulence and its consequences.

2.3. Electromagnetic Ion Cyclotron Instability

2.3.1. Linear Properties
[12] In Appendix A, we give the details of the derivation

of the dispersion relation for highly oblique shear Alfven
waves near the lithium ion cyclotron frequency. These are
linearly polarized waves which results from the coupling of
left and right circularly polarized modes for k? � kz. The
simplified version [equation (A21)] of this dispersion
relation can be written as

D w; kð Þ ¼ k2z V
2
A

w2
1þ k2x c

2

w2
pe

1

z2Z 0 zð Þ

 !�1

�
X
a;l

nama

nHmH

l2W2
a

l2W2
a � w2

2Gl bað Þ
ba

þ
X
l

nLimLi

nHmH

dJ 2l ssð Þ
ssdss

l2W2
Li

w w� lWLið Þ ¼ 0; ð3Þ

where the subscripts a, e, and Li indicate ambient ion
species (hydrogen and helium), electron, and lithium,
respectively. Helium density is about 5% of hydrogen at
L = 2 [Craven et al., 1997]. Since the instability lifetime is
designed to be less than the thermalization time by
restricting tp � 1/nLi�H, we ignore the thermalized lithium
component from the dispersion relation by setting nLit = 0 in
equation (A21). Z(z) is the plasma dispersion function, Z0 =

dZ(z)/dz, z = w/
ffiffiffi
2

p
kzvte, vta =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�=m�

p
, ba = (kxra)

2/2, ra =
vta/Wa, Gl(b) = Il(b)exp(�b), where Il(b) are the modified
Bessel function, ss = k?Vs/WLi, and Jl are the Bessel functions.
It can be shown that the energy density of these waves
becomes negative because @wD(w)/@wjw=wr

< 0 when
dJl

2(ss)/dss is negative which is a necessary condition for
wave growth. Since dJl

2(ss)/dss < 0 for ss > 1, this
instability occurs for short perpendicular wavelengths with
k? � kz. This differentiates these waves from the classical
electromagnetic ion cyclotron (EMIC) waves for which
typically k? � kz. To determine the wave frequency, we
ignore the helium and lithium species because their mass
densities are much smaller than that of the hydrogen to obtain

w2 ¼ k2z V
2
A

2G1 bHð Þ
bH

1þ k2x c
2

w2
pe

1

z2Z 0 zð Þ

 !
þ k2z c

2

w2
pH

: ð4Þ

In the typical MHD limit, i.e., long wavelength and cold
plasma corresponding to (2G1/bH) = 1 and z2Z0(z) = 1,
equation (4) reduces to the expression for the inertial shear
Alfven waves,

wr ¼ kzVA 1� k2x c
2

2w2
pe

 !
; ð5Þ

but for short wavelengths and a cold plasma, the real
frequency is

w2
r ¼

k2z V
2
A

1þ k2x c
2

w2
pe

þ k2z c
2

w2
pH

 ! : ð6Þ

[13] To obtain the growth rate g, analytically, we impose
the double resonance condition that the real frequency wr is
determined by both equation (4) and the condition wr = lWLi.
Under this condition, the growth rate is given by

g
lWLi

¼ 1

2

�Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ nLiMLi

nHMH

dJ 2l ssð Þ
ssdss

����
���� bH

G1 bHð Þ
W2

H � l2W2
Li

W2
H

 !2
vuut

2
64

3
75; ð7Þ

where l < mLi/mH and electron Landau damping effect is
included through

D ¼ z3 exp �z2
� � W2

H � l2W2
Li

2W2
H

 !
: ð8Þ

[14] Since these waves have negative energy density,
Landau damping does not suppress them but can lower
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the growth rate. Equation (7) indicates that there is no
threshold for the instability as long as tp � 1/nLi�H because
the thermalized lithium ions which can damp the waves are
negligible. Plots of dJl

2(ss)/dss against ss indicate that the
negative peak of dJl

2(ss)/dss occurs roughly for ss* =
kx*Vs/WLi � (l + 2). As mentioned earlier, the parameters of
interest at L = 2 are n0 � 3� 103 cc, TH = Te � (0.3–0.5) eV
(night-day), B0 � 0.04 G, VA � 1.6� 103 km/s, Vs = 7 km/s,
and b � 4�10�5. Also, mLi = 7mH and mLiVs

2/2 � 1.75 eV.
These imply that

b*H ¼ k*2x v2tH

2W2
H

� l þ 2ð Þ2 mH

mLi

TH

mLiV 2
s

� 1; ð9Þ

for lower harmonics, but

k2x c
2

w2
pe

� l þ 2ð Þ2 memH

m2
Li

V 2
A

V 2
s

� 1: ð10Þ

It follows that z � 1/bH* > 1, which implies that Landau
damping is weak especially for the lower harmonics.
Equation (7) indicates that for weak Landau damping (i.e.,
D ! 0), the instability growth rate varies as the square root
of the lithium-to-hydrogen-density ratio, while for the
strong Landau damping case, it varies linearly with the
density ratio.
[15] Figure 3 is a plot of growth rate versus parallel wave

vector for different density ratios (nLi/nH) for the parameters
relevant to L = 2. The frequency is chosen to be around the
third lithium harmonic (l = 3). The value of kxc/wpH = 170.
It was obtained by numerical solution of equation (3)
including helium with nHe/nH = 0.05. Figure 3 shows that
the growth occurs for short perpendicular wavelengths but
large parallel wavelengths.
[16] Figure 4 is a plot similar to Figure 3 where we use

nLi/nH = 0.03 and plot the growth rates near different

lithium cyclotron harmonics. For l = 1, 2, 3, 4, and 5, the
corresponding values of kxc/wpH = 85, 135, 170, 210, and
245, respectively. We find that as the harmonic number
increases, the range of unstable kz also increases, but the
typical value of the ratio kz/kx where the instability peaks
remains around 0.01–0.03. This can be understood from the
dispersion relation equation (6). For Li7 wr = lWLi ffi WHl/7,
equation (6) reduces to (1 � (l/7)2)�kz

2 = 1 + �kx
2m/mH, where

�kz,x 
 kz,xc/wpH. Neglecting ‘‘1’’ in the right-hand side, we

get (kx/kz) ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mH=með Þ 1� l=7ð Þ2

� �r
.

2.3.2. Trapping of Waves in Magnetospheric Cavity
[17] It can be shown that these waves, generated around

the equator where the Earth’s magnetic field is weakest, are
reflected as they propagate along the magnetic field in each
hemisphere. Since their perpendicular group velocity,
obtained from equation (6) for kz

2c2 � wpH
2 and kx

2c2 > wpe
2 ,

@w/@kx = VA(kz/kx) � VA/100, is small, the radial transport of
these waves is not large. Consequently, the waves are
trapped along the magnetic field and will oscillate between
the two turning points. The formation of such oscillator will
effectively increase the turbulence lifetime, which, as shown
in section 5, will increase the efficiency of pitch angle
scattering. It is known that in a multi-ion species plasma,
such as hydrogen and helium, reflection of waves below the
ion cyclotron frequency occurs when the Buchsbaum fre-
quency, wB

2 = WHWHe(nHmH + nHemHe)/(nHmHe + nHemH),
equals to the wave frequency as the wave propagates along
the field lines [Rauch and Roux, 1982; Roux et al., 1984]. In
this case, each harmonic of the lithium gyrofrequency WLi

that is above the Buchsbaum frequency wB reflects at some
point along the field line. Consequently, the waves are
trapped between two symmetric turning points forming an
oscillator and are amplified during transits through the
region of instability. Lower harmonics which are not
trapped will be eventually lost. A more detailed analysis

Figure 3. Growth rate, obtained by solving equation (3),
versus parallel wave vector for different density ratios
(nLi/nH) for the parameters relevant to L = 2. The frequency
is chosen to be around the third lithium harmonic (l = 3).

Figure 4. Growth rate, obtained by solving equation (3),
for harmonics of the lithium gyrofrequency (l = 1–5)
versus parallel wavelength. The density ratio is held fixed at
nLi/nH = 0.03. The spread in widths near the maximum
growth rate indicates that Landau damping is weaker for
lower harmonics than for higher harmonics.

A06231 GANGULI ET AL.: EVOLUTION OF ION CYCLOTRON TURBULENCE IN THE MAGNETOSPHERE

5 of 16

A06231



of this topic including Landau and collisional dampings,
behavior of the wave equation near the Buchsbaum fre-
quency, the quality of reflection, etc., during propagation
outside the region of creation will be published in a
subsequent article.
2.3.3. Energy Partition
[18] The energy of these waves, W, is largely in the

kinetic energy of the particles, i.e., hydrogen and electrons.
This can be seen by comparing the particle kinetic energy
and the field energy (see Appendix A),

mene v1zj j2þmHnH v1y
�� ��2� �

=2

B1y

�� ��2=8p ¼ 1þ 2k2x c
2

w2
pe

 !
� 1: ð11Þ

Although the magnetic fluctuations of these waves are small,
they are electromagnetic in nature. This is unlike the classical
MHD Alfven waves with kx ! 0 in which the energy in the
particles is equal to that in the fluctuating fields.
2.3.4. Compressibility
[19] A similar departure from classical behavior is also

found in the compressibility of the oblique shear Alfven
waves near the ion cyclotron frequency. To see this, we note
that the velocity fluctuations associated with the shear
Alfven waves are given by

vyi ¼
cEx1

B0

1� w2

W2
H

 !�1

; ð12aÞ

vxi ¼ �i
w
WH

cEx1

B0

1� w2

W2
H

 !�1

; ð12bÞ

vye ¼
cEx1

B0

; ð12cÞ

vze ¼ �i
e

m

Ez1

w
: ð12dÞ

From the ion continuity equation, we get the density
perturbation

n1

n0
¼ kxvxi

w
¼ �i

kx

WH

cEx1

B0

1� w2

W2
H

 !�1

¼ �i
kxvyi

WH

¼ �i
kxc

wpH

vyi

VA

:

ð13Þ

Thus while the classical Alfven waves for which kx ! 0 is
incompressible, the oblique shear Alfven waves of our
interest is compressible.
2.3.5. Onset of Nonlinear Effects
[20] Finally, we note that the shear Alfven waves are

generated with large amplitude, and hence the nonlinear
effects become important. Assuming about 1% of the
energy released goes into the waves, we see that W �
0.01mLinLiVs

2 � 10�7B0
2/8p for L = 2 conditions. The

corresponding number for the natural background during
solar storms is 10�13B0

2/8p. Thus the wave amplitudes
generated by the neutral gas release will be 3 orders of

magnitude larger than the normal background fluctuations
in the radiation belt. Therefore a careful analysis of the
nonlinear evolution becomes necessary.

3. Nonlinear Evolution of the Induced Shear
Alfven Waves

[21] As discussed in section 2.2, the neutral injection
process introduces energy (approximately 30 GJ for 1 ton
of lithium) into the medium which can be accessed to pump
and sustain turbulence, whereas in section 2.3, we studied the
onset condition and linear properties of the shear Alfven
waves. We found that these waves are generated with short
perpendicular wavelength but large amplitudes, which make
them weakly electromagnetic but likely nonlinear. The key
nonlinear issues of interest to us are as follows: Can the
nonlinear process lead to the generation of long wavelength
electromagnetic wave, and how do these waves affect the
plasma environment? What are the controlling parameters?
In the absence of dissipation mechanisms, such as collisions,
Landau damping, etc., turbulence, maintained over a suffi-
ciently long period of time, can distribute energy into all
available wave vectors of the shear Alfven waves as well as
other possible normal modes, such as the whistler, magneto-
sonic, etc., through nonlinear processes. Several nonlinear
processes may be operative. Estimates of their rates indicate
that in a low b plasma, such as the one we consider,
coalescence of short wavelength modes into long wavelength
modes that are unaffected by electron Landau damping is the
dominant process. In the following, we consider this process
in somewhat more detail but defer a comprehensive nonlinear
study to a future article.
[22] In the nonlinear wave-wave interaction, the plas-

mon energy and momentum conservation law, i.e., w1(~k1) ±
w2(~k2) = w3(~k3) and ~k1 ± ~k2 = ~k3, must be satisfied. We
showed in the previous section that the shear Alfven waves
in a cold hydrogen plasma are described by the dispersion
relation

D 

w2
pH

W2
H � w2

1þ k2?c
2

w2
pe

 !
� k2z c

2

w2
¼ 0: ð14Þ

We replace kx by k? because, in general, turbulence proceeds
in three dimensions. Equation (14) can be solved to obtain

w2 ¼ k2z V
2
A

,
1þ k2?c

2

w2
pe

þ k2z c
2

w2
pH

 !
: ð15Þ

Defining w/WH ! �w, kz,?c/wpH ! �kz,? in equation (15), we
obtain

�w ¼ �kz
�� ��= 1þ �k2?me=mH þ �k2z

� �1=2
: ð16Þ

The plasmon ‘‘energy,’’ i.e., the frequency w, is positive,
whereas the projections of the ‘‘momentum,’’ i.e., the wave
vector ~k, can be positive or negative. Since the waves
generated by the lithium release have short wavelengths
�k?
2 � mH/me, �kz

2 > 1, we can simplify equation (16) to

�w ¼ �kz
�� ��. �k2?me=mH þ �k2z

� �1=2
: ð17Þ
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[23] Let two such degenerate shear Alfven waves, deno-
ted by subscripts 1 and 2, coalesce to generate another shear
Alfven wave, denoted by subscript 3, such that~k?3 =~k?1 +
~k?2 � ~k?1 and kz3 = kz1 ± kz2. Then the plasmon energy-
momentum conservation law for the three interacting waves
is given by,

�kz1
�� ��

�k2?1me=mH þ �k2z1
� �1=2 þ �kz2

�� ��
�k2?2me=mH þ �k2z2
� �1=2

¼
�kz3
�� ��

1þ �k2?3me=mH þ �k2z3
� �1=2 ; ð18Þ

We consider the special case, �kz3 = �kz1 � �kz2 < �kz1, �k?3 =
�k?1 � �k?2 � �k?1, �k?1

2 � mH/me but �k?3
2 � mH/me. Hence

the solution of equation (18) is

�kz1 � �kz2
�� ��
�kz1
�� ��þ �kz2

�� �� ¼ �kz1 � �kz2
�� ��
2 �kz1
�� �� ¼

1þ �k2z3
� �1=2

�k2?1me=mH þ �k2z1
� �1=2

� 1

�k2?1me=mH

� �1=2 : ð19Þ

The last equality results because �w1 � �w2 � �w3 � �kz3 �
O(1) and (�k?1

2 me/mH)
1/2 > �kz1 > 1. From equations (18) and

(19), we find that w1 = w2 = w3/2 and w1 � w2 � w3/(�k?1
2 me/

mH)
1/2. Thus we see that the highly oblique shear Alfven

waves can decay into the usual shear Alfven waves with
�k?3 � (mH/me)

1/2. While we found the mother waves to be
weakly electromagnetic in nature with most of the wave
energy concentrated in the particles [see section 2.3,
equation (11)], the long wavelength daughter waves are
electromagnetic with wave energy equally partitioned
between the particles and the fluctuating magnetic fields.
This has an important consequence as far as pitch angle
scattering is concerned as discussed in section 5.
[24] The turbulence can also lead to the generation of the

magnetosonic waves. We demonstrate this for a particular
case using the dispersion relation for the magnetosonic
wave with kz3 = 0, which has no resonance at the hydrogen
cyclotron frequency. In normalized values, it is

�w3 ¼ �k?3: ð20Þ

Let ~k?1 + ~k?2 = ~k?3 << ~k?1, kz1 + kz2 = kz3 = 0. Then the
plasmon energy-momentum conservation law for two shear
Alfven waves coalescing to generate a magnetosonic wave,
i.e., w3 = w1 + w2, is

�kz1
�� ��

�k2?1me=mH þ �k2z1
� �1=2 þ �kz2

�� ��
�k2?2me=mH þ �k2z2
� �1=2 ¼ �k?3: ð21Þ

Equation (21) gives

�k?3 ¼
2 �kz1
�� ��

�k2?1me=mH þ �k2z1
� �1=2 : ð22Þ

Since for the mother waves w1 � w2 < WH, the frequency of
the daughter waves, represented by equation (20), is

approximately w3 < 2WH. Therefore it follows that �k?3 is
on the order of unity. Thus both �k?3 and �kz3 are restricted.
This implies that the volume these daughter waves occupy
in k space is limited. Hence the energy pumped into the
daughter magnetosonic waves is smaller than in the
daughter Alfven waves.

3.1. Coalescence of Shear Alfven Waves

[25] We now consider the rate of coalescence of the shear
Alfven waves. The nonlinear interaction of the mother
waves leads to the generation of a second-order current as
explained in Appendix B. The rate of coalescence is
determined by calculating the power due to the second-
order current and electric field when the daughter wave is in
resonance with the mother waves (i.e., w3 = w1 + w2 and
~k3 = ~k1 + ~k2). When the second-order current is included,
the general equation for the shear Alfven waves is given by

k2z Ex � kxkzEz �
4p
c2

iwsxxEx ¼ k2z Ex �
4p
c2

iwsxxEx 1� k2x c
2

4piwszz

� �

¼ 4p
c2

iwj 2ð Þ
x ;

ð23Þ

where jx = sxxEx, jz = szzEz, and sxx and szz are the
components of the plasma conductivity tensor. If jx

(2) = 0, then
equation (23) reduces to equation (A7). For simplifying the
analysis we will consider the special case where jk?3j =
jk?1j � jk?2j � jk?1j, �k?3

2 � mH/me. In addition, wherever
possible, we neglect terms proportional to ~k?3 and assume
that~k?1 =�~k?2; that is, the wave vectors of themother waves
are nearly in the same plane, say the (x, z) plane. We calculate
the rate of the coalescence of two mother waves with kx1 �
�kx2 which generates a daughter wave with kx3 � kx1 but
kx3 � kz3. Under these conditions, the daughter waves are
described by the simplified form of equation (23),

k2z3Ex �
4p
c2

iw3sxxEx ¼
4p
c2

iwj 2ð Þ
x : ð24Þ

[26] We obtain jx
(2) by solving the momentum balance

equation [equation (B1)] for the plasma and E(2) by solving
equation (24). Using these quantities, the rate of coales-
cence, i.e., jx

(2)E(2), can be calculated. The detailed analysis
is given in Appendix B. The rate of coalescence for two
short wavelength mother waves into a long wavelength
daughter wave (or equivalently, the rate of generation of
the daughter waves) is found to be [equation (B18)],

dW3

d WH tð Þ

� �
2D

� w5
3

W5
H

mH

me

W 2
1

B2
0=8p

: ð25Þ

In deriving equation (25), we have assumed a uniform
plasma and thus ignored the nonlocal effects which will be
addressed in a subsequent article. Here W1 and W3 are the
energy densities of the mother and daughter waves. The
subscript ‘‘2D’’ indicates that for this interaction, the mother
and daughter wave vectors are all in one plane. Note that
this process is ignorable for the low-frequency (w � WH)
Alfven waves, i.e., in the MHD limit.
[27] In contrast to the above, the coalescence of the mother

waves can give rise to the longwavelengthmagnetosonicwaves
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in the usual MHD limit with k?3, kz3 � wpH/c. In this process,
the daughter waves are not in the same plane as the mother
waves, and the interaction takes place in three dimensions.
The rate for this process is estimated in equation (B21).
Taking the ratio of equation (B21) to equation (25), we find

dW3=dtð Þ3D= dW3=dtð Þ2D � me=mHð Þ WH=w3ð Þ4� 1; ð26Þ

which indicates that for our case where w3/WH � 1, the
decay into daughter shear Alfven waves will dominate over
the decay into magnetosonic waves.
[28] In the traditional treatment of the low-frequency

(w/WH � 1) Alfvenic turbulence, the energy flows from
long to short scales by the cascade of energy transport.
At each step, the wave scale size is approximately halved
and the frequency doubled [Onishchenko et al., 2003;
Mikhailovskii et al., 1989]. In contrast, in our higher
frequency (w/WH � 1) case, the wave energy is distri-
buted in only a few steps over all wavelengths, in
particular, daughter waves are generated with long wave-
length, i.e., �k?(me/mH)

1/2 � �kz.
[29] For the nonlinear process to be important, the mother

wave amplitude must be large enough to trigger the coales-
cence quickly so that the nonlinear evolution can mature
within the plasma formation time tp. The mother waves are
pumped by the lithium ions created by photoionization of
the released neutral lithium atoms. As explained in section
2, the rate of creation of the lithium ions is given by tp

�1 �
1/165 s�1. Since the energy per newborn lithium ion is
mLiVs

2/2, the rate at which the released energy goes into the
generation of the mother waves is (nLi

TotalmLiVs
2/2tp). The

coalescence is triggered when this rate equals the rate of
production of the daughter waves as given in equation (25),

nTotalLi mLiV
2
s

2tp
� w3

mH

me

w4
3

W4
H

W 2
1

B2
0=8p

� � : ð27Þ

This indicates that the necessary condition for the onset of
the coalescence process is

W1

nTotalLi mLiV 2
s =2

� 1

WHtp

me

mH

WH

w3

� �5
B2
0

4pnTotalLi mLiV 2
s

 !1=2

: ð28Þ

For L = 2 parameters, nLi
Total = 300/cc, tp � 165 s, B0

2/
4pnLimLiVs

2 � 4 � 104, and w3/WH � 1, we see that the value
of the ratio W1/(nLi

TotalmLiVs
2/2) is approximately 0.03. This

implies that with only a small fraction of the released energy
delivered into the mother waves, it is sufficient to trigger the
generation of the coalescence process at t = 0.03tp � 1.5 s.
This is almost instantaneous and hencewill allow the nonlinear
process to comfortably evolve and mature within the plasma
formation time. In the following section, we examine the
ability of the daughter waves to meet the resonance condition
and enable pitch angle scattering of the energetic electrons.

4. Resonance Criterion

[30] For successful pitch angle scattering, we must ensure
that the wave vectors generated are consistent with the
resonance condition,

w� kzvz � We=gR ¼ 0; ð29Þ

where gR = 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=cð Þ2

q
= 2E + 1 is the relativistic factor

with electron rest energy taken to be 0.5 MeV, and E is the
electron kinetic energy in MeV. Because of the coalescence
condition, the daughter shear Alfven waves are generated
with �kz � 1. Once the energy is transferred to the daughter
waves, they are distributed among all possible wave vectors.
Because of magnetic beaching effect [Stix, 1992], these
wave vectors can assume larger numbers as the waves
propagate toward the equator. A rough estimate indicates
that largest value of �kz � (4bH)

�1/6 is possible before the
waves are cyclotron damped. This implies that �kz,max � 5
because at L = 2, the magnitude of bH � 10�5. Since
relativistic electron speed along the magnetic field is
vz � ccosq and w << We /gR � kzvz, the resonance condition
equation (29) can be expressed as

kzc

wpH

cos q �
We=wpH

� �
2E MeVð Þ þ 1

: ð30Þ

Since We/wpH � 17 at L = 2, the right-hand side of
equation (30) is approximately 3 for a 2-MeV electron.
Thus the spectrum of parallel wave vectors generated can
meet the resonance condition for a wide range of energies.

5. Pitch Angle Scattering of Relativistic Electrons
by Daughter Waves

[31] The general theory of pitch angle scattering of
relativistic electrons has been extensively studied [Lyons
et al., 1971, 1972; Lyons, 1974]. The turbulence generated
by the whistler or the EMIC waves have been considered as
the source for inducing pitch angle scattering of the trapped
relativistic electrons in the radiation belt environment. In the
method we propose in this article, the scattering will be
induced by the turbulence generated by shear Alfven waves
seeded by the release of neutral gas in the radiation belt.
These shear Alfven waves are linearly polarized because of
coupling of the left and right circularly polarized normal
modes in the frequency range near the ion cyclotron
frequency because k? > kz. In this respect, they are different
from left circularly polarized EMIC modes that have been
considered for pitch angle scattering.
[32] The turbulence is generated by waves in cold pre-

dominantly hydrogen plasma, which is described by the
dispersion relation equation (14) whose solution is given in
equation (15). In section 4, we saw that nonlinear coales-
cence can result into shear Alfven waves with k? > kz but
k?(me/mH)

1/2 � kz. The wave magnetic field is given by

B1y ¼ 2�1=2
X
k

Bk;y exp �iwt þ ikzzþ ik?r?ð Þ þ c:c: ð31Þ

Because the magnetic fluctuations are quasi-static w �
WH � �We (= We/gR), the energy of the relativistic
electron does not change, and hence we do not consider
energy diffusion. In addition, for Alfvenic waves, it can
be shown from the general quasi-linear equation that
diffusion of vz and v? are similar in magnitude, i.e., Dzz

� D?? � D?z but with different pitch angle dependence.
For particles whose pitch angle is close to p/2, the vz
diffusion will dominate, whereas for those whose pitch
angle is close to 0, the v? diffusion will dominate. Since
trapped particles have large pitch angles, we are primarily
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interested in the vz diffusion. The ~v � ~b1 force changes
the electron velocity in the z direction, and hence its pitch
angle q, since vz = vcosq and dvz = �vsinqdq when
expressed in cylindrical coordinates. This results in a
slow change in the pitch angle distribution f0(q)
approximately given in spherical coordinates by

@f0 qð Þ
@t

¼ 1

sin q
@

@q
sin qDqq

@f0 qð Þ
@q

: ð32Þ

We calculate the diffusion coefficient in cylindrical
coordinates because of physical transparency, and then
transforming in spherical coordinates, we express

Dzz ¼ a*1zdvz1 þ a1zdv*z1
D E

� v2Dqq=2: ð33Þ

Here a1z and dvz1 =
R
a1zdt are acceleration and change in

electron velocity in the z direction, respectively, as the
electron interacts with the resonant wave, and h f (t)i 
 (1/
T0)
R
f (t)dt, where T0 is a time interval that is much larger

than the period of the fast oscillation, implies fast time
averaging. In the quasi-linear theory, the particles interact
with individual waves, which in our case are plane
waves. The net modification to the equilibrium distribu-
tion due to an ensemble of waves constitutes the quasi-
linear effect. We examine the interaction of shear Alfven
waves with wave vectors in the (x, z) plane and then
integrate over an ensemble of all amplitudes and
directions of the wave vectors to obtain the net quasi-
linear diffusion. The z component of the equation of
motion for the resonant relativistic electron in a magnetic
field is

a1z ¼
dv1z

dt
¼ e

megRc
vxB1;y zð Þ; ð34Þ

where dgR/dt is neglected because of conservation of
energy. The unperturbed orbits of the electrons are

z ¼ vzt; vx ¼ v? cos �Wet; vy ¼ v? sin �Wet;
x ¼ v?=�We

� �
sin �Wet:

ð35Þ

Substituting vx, x, and z in equation (34) and using a Fourier
component of the magnetic field, i.e., B1y = 2�1/2Bk,yexp(�iwt
+ ikzz + ik?r?), we obtain the perturbed equation of motion
along the magnetic field B0z,

a1kz ¼
effiffiffi

2
p

megRc
v?Bk;y

X1
n¼�1

nJn �sð Þ
�s

exp �iwt þ ikzvzt þ in�Wet
� �

;

ð36Þ

where �s = kxv?/�We 
 k?v?/�We.
[33] Now we calculate change of v1z. Since the magnetic

fluctuations are quasi-static, we ignore w and consider
resonance with only the n = ±1 electron harmonics. Thus
dv1z is given by

dv1kz ¼
effiffiffi

2
p

megRc
v?Bk;y

J�1 �sð Þ
�s

Zt
�1

dt exp ikzvzt � i�Wet
� �

: ð37Þ

By integrating equation (37), we get

dv1kz ¼
effiffiffi

2
p

megRc
v?

J�1 �sð Þ
�s

Bk;y
1

i ��We þ kzvz
� �

� exp i ��We þ kzvz
� �

t: ð38Þ

Using equations (36) and (38) in equation (33) and
summing over the k spectrum, we obtain Dzz,

Dzz vzð Þ ¼ e=megRcð Þ2v2?
X
~k

~Bk �~k=k
��� ���2 J�1 �sð Þ

�s

� �2
pd kzvz � �We

� �
� p�Wev

2
? B1 kzj j ¼ �We=c

� ��� ��2=4B2
0; ð39Þ

where J±1(�s)/�s � ±1/2 since �s is small.
[34] We estimate the change in pitch angle as

Dq2 � TResDqq � 2TResDzz=v
2 � p�WeTRes B1j j2=2B2

0; ð40Þ

where TRes is the residence time of the electron inside the
turbulent cloud with dimensions Lz and Lf, along the
magnetic field and in the azimuthal direction, respectively.
[35] The electron trajectory consists of a bounce motion

along the magnetic field as well as an azimuthal drift. The
bounce time of a typical relativistic electron is TB � pLRE/c
seconds. (Actually, TB is considerably smaller depending on
the pitch angle because of mirroring.) During one bounce,
the relativistic electron will be resident inside the cloud for
Lz/c seconds. During the lifetime of the turbulence Tt, the
electron enters the plasma cloud Nc = TtVf/2pLRE times
while it encircles the earth with an azimuthal velocity Vf �
cre/LRE [Hargreaves, 1992] where re is the electron gyro-
radius. The number of bounce while azimuthally drifting
inside the plasma cloud is NB = Lf/VfTB. A relativistic
electron resides inside the cloud during the turbulence
lifetime for TRes seconds, where

TRes ¼ NBNcLz=c ¼
Tt

2p2 LREð Þ2
LzLf: ð41Þ

More accurately, for a mirroring 2-MeV electron with 45�
pitch angle, it can be shown that TB = 1.7RE/c, which makes
TRes about 4 times larger. Taking this into account and
substituting equation (41) in equation (40), we get

Dq2 gRð Þ ¼ 4L�WeTt

4p B2
0=8p

� �
LREð Þ3

W3LzLfRE

1þ �W2
e=w

2
pH

2DLz gRð Þ
Lz

; ð42Þ

where W3 is the energy density of the daughter waves and
2DLz(gR)/Lz is the fraction of electron trajectory over which
the resonance condition is satisfied. DLz corresponds to a
change of D�kz such that the resonance condition is satisfied
for every �kz in the interval [�kz + D�kz, �kz � D�kz].
[36] From equation (42), it can be seen that the change

in the pitch angle depends on the energy deposited into
the daughter waves and the turbulence lifetime but not
on turbulent energy distribution in space. The factor (1 +
�We
2/wpH

2 )�1 appears in equation (42) because the magnetic
part of the wave energy density is less by a factor (1 +
kz
2c2/wpH

2 ) = (1 + �We
2/wpH

2 ) than the total wave energy

A06231 GANGULI ET AL.: EVOLUTION OF ION CYCLOTRON TURBULENCE IN THE MAGNETOSPHERE

9 of 16

A06231



density W3 [see equation (A35)], where we have used the
resonance condition �We � kzc.
[37] At L = 2 using B0 = 0.04 G and the release of

1029 lithium atoms with kinetic energy 1.75 eV, we have

Dq2 gRð Þ � g�1
R

Tth

1þ �W2
e=w

2
pH

2DLz gRð Þ
Lz

; ð43Þ

where h is the fraction of energy released which goes into
the long wavelength part of the turbulence.
[38] The helium-hydrogen collisions will lead to damping

of the waves at the rate of 0.5nH�He = 0.5 � 10�3 s�1.
Hydrogen-electron collisions could also be important and
will be addressed in a subsequent article. Although waves
are generated continuously over the ionization time Ti =
3000 s, we use the turbulence lifetime Tt = 2000 s. For
2-MeVelectrons, gR = 5.With �We

2/wpH
2 � 9 andDLz(gR)/Lz�

1/4 (see Figure 5), we get

Dq2 � 20h: ð44Þ

Thus with a small fraction (few percent) of the released
energy deposited into the turbulence, a change in pitch
angle of order unity can be achieved. This is large enough to
scatter the trapped relativistic electrons into the loss cone.
[39] From the above, it is clear that for electron energy

above megaelectron volts, quasi-linear scattering is quite
efficient. As noted earlier, the turbulence generated by
neutral gas release is intense and may give rise to randomly
distributed magnetic structures. This is a major departure
from the quasi-linear picture where the wave magnetic field
is assumed to be plane waves which are periodic. Such
magnetic structures offer the possibility of inducing pitch

angle scattering even in those electrons that are not quite in
resonance. This will enhance the scattering rate and will be
especially important for electrons with energies less than
megaelectron volts. The theory for nonresonant scattering is
now under development.

6. Conclusion

[40] We have shown that it is possible to use a neutral gas
release as a source for intense electromagnetic turbulence in a
low-b near-Earth plasma. An essential ingredient for the
success of this process is the ability to create a ring distribution
in the perpendicular velocity of the injected ions. This converts
the orbital kinetic energy of the neutrals into a reservoir of free
energy for the waves to tap into. Since the orbital kinetic
energy is large, it allows for a very large source of energy for
exploitation. It is equivalent to creating an ionmagnetron in the
radiation belt and maintaining it by photoionization. The
magnetron utilizes the free energy to amplify the necessary
electromagnetic waves for pitch angle scattering. The prox-
imity to the Earth will allow relatively easy diagnosis of the
nonlinear evolution which will help clarify the nonlinear
plasma dynamics in the near-Earth environment.
[41] In this article, we have focused on only the plasma

physics aspects. There are a number of technical issues
related to the release of such a large amount of matter. We
have considered some of them, but a more detailed analysis
will be necessary. It is found that vaporization of a ton of
lithium (without formation of oxides) can be achieved by 9
tons of a gasless thermal driver such as titanium-boron (Ti/
2B; P. Zavitsanos, private communication). Transportation
of this amount of material into space may present technical
challenges. However, it is to be noted that the NASA/
Combined Release and Radiation Effects Satellite (CRRES)
is comparable to our specification and can be modified for
the release of larger amount of materials. Thus existing and
proven technology may be sufficient to conduct an exper-
iment to test the concept we suggest. However, the possi-
bility for a more efficient method for vaporization that can
yield more energy for less mass is discussed in Appendix C.
[42] While this study establishes the possibility of neutral

gas release as a means for seeding and probing nonlinear
processes in the near-Earth plasma, a more detailed theo-
retical/computational/experimental program is currently
underway for a more quantitative analysis. Detailed analyt-
ical and numerical studies to investigate the quasi-linear and
nonlinear characteristics such as the magnitude of the
saturated wave amplitude generated by the instability,
transport of energy in the turbulence, and the efficiency of
pitch angle scattering of the relativistic electrons, etc., are
now under investigation.

Appendix A: Shear Alfven Waves Around Ion
Cyclotron Frequency

A1. Linear Dispersion Relation

[43] In a neutral gas release experiment considered in this
article, the plasma generated will consist predominantly of
hydrogen (H) and electron (e) with about 5% lithium (Li).
At L = 2, helium is also present but with low abundance of
about 5% of H+ [Craven et al., 1997]. The lithium ion ring
distribution generated by the shaped release of neutral

Figure 5. Mother waves generated near the third lithium
cyclotron harmonic, wM � 3WLi, and daughter waves with
wD � 2wM undergo reflection when their frequencies
approach the hydrogen-helium Buchsbaum frequency wB.
In this example, daughter waves travel a distance Lz from
the equator before reflection, approximately twice as far as
the mother waves. The daughter wave with �kz = 4 initially
will reach �kz = 2, after a distance indicated by DLz beyond
which they are no longer resonant with a 2-MeV electron.
DLz/Lz � 0.25.
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lithium gas perpendicular to the ambient magnetic field
will give rise to shear Alfven waves near the lithium
cyclotron frequency with electric field fluctuations predomi-
nantly perpendicular to the magnetic field. Initially, there is
no thermal lithium component, but after a few lithium-
hydrogen collision time, a thermal lithium component will
be generated. Considering ky = 0 and kz � kx � k, the
dispersion relation is determined by Maxwell equations
neglecting the displacement current,

r�~B ¼ 4p
c
~J ; ðA1Þ

r �~E ¼ � 1

c

@~B

@t
; ðA2Þ

along with the quasi-neutrality condition

r �~J ¼ 0; ðA3Þ

where ~J = $s � ~E and $s is the conductivity tensor.
Equations (A1) and (A2) lead to

k2x þ k2z
� �

~E �~k kxEx þ kzEzð Þ ¼ 4piw
c2

~J : ðA4Þ

From the y component of equation (A4), we find that

Ey ¼
4piwsyx

k2c2 1� 4piw
c2

syy

k2

� �Ex � i
w2
pH

k2c2
w
WH

Ex; ðA5Þ

and from the quasi-neutrality condition, we obtain

Ez ¼ �sxx

szz

kx

kz
Ex: ðA6Þ

Using equations (A5) and (A6) in the x component of
equation (A4), we obtain the dispersion relation for the
shear Alfven waves with kx � wpH/c > kz,

k2z c
2

w2
¼ 4pi

w
sxx 1� k2x c

2

4piw
1

szz

� �
; ðA7Þ

where the conductivities sxx and szz are defined as

sxx ¼ � i

2

X
a

w2
pa

X
l

Z1
�1

dvz

Z1
0

dv2? 1� kzvz

w

� ��

� @f0a
@v2?

þ kzvz

w
@f0a
@v2z

�
lWa=k?ð Þ2J 2l sað Þ
w� kzvz � lWa

; ðA8Þ

szz ¼ � i

2

X
a

w2
pa

X
l

Z1
�1

dvz

Z1
0

dv2?
@f0a
@v2z

� lWa

w

�

� @

@v2z
� @

@v2?

� �
f0a

�
v2z J

2
l sað Þ

w� kzvz � lWa
; ðA9Þ

and f0a is the equilibrium distribution function, wpa is the
plasma frequency, Wa is the cyclotron frequency, sa =

k?v?/Wa where a represents the species, and Jl(s) are the
Bessel functions. Also, note that sxx is due to perpendicular
motion of ions for w � We, whereas szz leads to parallel
motion which is dominated by the electrons because of their
larger mobility. Hence szz may be simplified by neglecting
the ion contribution and assuming l = 0 and se = k?v?/We� 1,
so that

szz ¼ �iw2
pe

Z1
�1

dvz

Z1
0

v?dv?
v2z

w� kzvz

@f0e
@v2z

: ðA10Þ

The electron and the thermal components of the magneto-
sphere (for example, hydrogen, helium, lithium when
thermalized, etc.) are represented by Maxwellian distribu-
tion function,

f0a ¼ 1

pv2ta

� �3=2

exp � v2?
v2ta

� �
exp � v2z

v2ta

� �
: ðA11Þ

where vta =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p
is the thermal velocity. The initial

lithium distribution function is a narrow ring distribution,
such as given in equation (2). For Vs � vtLi, the
perpendicular velocity distribution may be replaced by a
delta function so that

f0Li ¼
1

2pð Þ3=2VsvtLi
d v? � Vsð Þ exp � v2z

v2tLi

� �
: ðA12Þ

Using equations (A11) and (A12) in equation (A8), we
calculate sxx =

P
a sxx

a + sxx
Li where a denotes the thermal

population. It can be shown that

sa
xx ¼ �

iw2
pa

4pw

X
l

l2
Gl bað Þ
ba

w
kzvta

� �
Z

w� lWa

kzvta

� �" #
; ðA13Þ

where ba = (kxra)
2, ra = vta/Wa, Z(z) is the plasma

dispersion function, and Gl(b) = Il(b)exp(�b), where Il(b)
are the modified Bessel function. Similarly, the lithium ring
distribution leads to

sLi
xx ¼

iw2
pLi

4pw

X
l

lWLi

k?

� �2
2J 2l ssð Þ
v2tLi

� 1

Vs

dJ 2l ssð Þ
dVs

� ��

� 1

2
Z 0 w� lWLi

kzvtLi

� �� �
� 1

Vs

dJ 2l ssð Þ
dVs

w
kzvtLi

� �

� Z w� lWLi

kzvtLi

� ��
; ðA14Þ

where ss = k?Vs/WLi and Z0 = dZ(z)/dz. Also, using
equation (A11) in equation (A10), we find that

szz ¼
i

4p

w2
pe

w
z2Z 0 zð Þ; ðA15Þ

where z = w/kzvte.
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[44] Substituting equations (A13)– (A15) in equation
(A7), we derive the general dispersion relation,

k2z c
2

w2
1þ k2x c

2

w2
pez

2Z 0 zð Þ

 !�1

¼
X
a

w2
pa

w2

X
l

l2
Gl bað Þ
ba

zaZ z la
� �

�
w2
pLi

w2

X
l

lWLi

k?

� �2
2J 2l ssð Þ
v2tLi

��

� 1

Vs

dJ 2l ssð Þ
dVs

�
Z 0 z lLi
� �
2

� 1

Vs

dJ 2l ssð Þ
dVs

zLiZ z lLi
� ��

; ðA16Þ

where za = (w/kzvta) and za
l = (w � lWa)/kzvta.

[45] The phase speed of the waves are comparable to the
Alfven speed and hence much larger than the thermal speed
of any species, i.e., w � lWa � kzvta. Hence the Z functions
can be expanded for large arguments. Noting that Gl = G�l,
equation (A13) reduces to

sa
xx ¼

iw
4p

X
l

l2w2
pa

w2 � l2W2
a

2Gl bað Þ
ba

: ðA17Þ

Similarly, equation (A14) reduces to

sLi
xx ¼ �

w2
pLi

w2

X
l

l2

� 1

ss

dJ 2l ssð Þ
dss

w
w� lWLi

� �
þ J 2l ssð Þ

s2
s

kzVs

w� lWLi

� �2
" #

;

ðA18Þ

where l < mLi/mH for the lithium component so that
hydrogen cyclotron harmonic resonance is avoided. The
second term in equation (A18) is proportional to (Vs/VA)

2

which for our application is �10�4. Hence we ignore this
term. However, for Vs/VA > 1, a condition often reached in
the solar wind-comet interaction, this term can be dominant
and give rise to low-frequency Alfvenic waves with kz � k?
[Sharma and Patel, 1986; Galeev and Sagdeev, 1988].
From equations (A17) and (A18), we obtain simplified sxx,

sxx ¼ � iw
4p

X
a;l

l2w2
pa

l2W2
a � w2

2Gl bað Þ
ba

"

�w2
pLi

X
l

1

ss

dJ 2l ssð Þ
dss

l2

w w� lWLið Þ

#
: ðA19Þ

Using equations (A15) and (A19) in equation (A7), the
simplified dispersion relation for the shear Alfven waves is

D w; kð Þ ¼ k2z V
2
A

w2
1þ k2x c

2

w2
pe

1

z2Z 0 zð Þ

 !�1

�
X
a;l

nama

nHmH

l2W2
a

l2W2
a � w2

2Gl bað Þ
ba

þ
X
l

nLimLi

nHmH

dJ 2l ssð Þ
ssdss

l2W2
Li

w w� lWLið Þ ¼ 0: ðA20Þ

The last term is due to the lithium ions just after ionization
with ring distribution. This term is responsible for the

instability. The contribution of the thermal lithium, which
may be subsequently generated because of lithium-hydro-
gen collision, is included in the second term. The thermal
lithium contribution can lead to a threshold condition for the
instability. Combining the thermal and ring lithium terms,
we rewrite equation (A20) as

D w; kð Þ ¼ k2z V
2
A

w2
1þ k2x c

2

w2
pe

1

z2Z 0 zð Þ

 !�1

�
X
a;l

nama

nHmH

l2W2
a

l2W2
a � w2

2Gl bað Þ
ba

þ
X
l

nLimLi

nHmH

dJ 2l ssð Þ
ssdss

l2W2
Li

w w� lWLið Þ

� 1þ nLit

nLi

2Gl bLitð Þ
bLit

1

dJ 2l ssð Þ=ssdss

� �
 !

¼ 0; ðA21Þ

where the subscript ‘‘Lit’’ represents thermalized lithium
quantities, and the subscript ‘‘a’’ represents the natural
ambient species. Equation (A21) indicates that, initially,
there is no threshold for the instability, but as the thermal
lithium population increases, there is a threshold determined
by the condition

nLit

nLi

2Gl bLitð Þ
bLit

1

dJ 2l ssð Þ=ssdss

�� �� ¼ 1: ðA22Þ

A2. Wave Energy Density

[46] We now examine the wave energy. To do this, we
introduce the vector potential ~A such that~B = ~r �~A. Using
the Coulomb gauge, i.e., ~r �~A = ikxAx + ikzAz = 0, and since
ky = 0, Ax = �Azkz/kx, and we get for the shear Alfven waves
of interest

By ¼ �ikxAz þ ikzAx ¼ �ikxAz 1þ k2z =k
2
x

� �
ffi �ikxAz; ðA23Þ

where kx � kz is assumed. In addition,

Ex ¼ �ikx8� @Ax=c@t ffi �ikx8; ðA24Þ

Ez ¼ �@8=@z� @Az=c@t; ðA25Þ

jz ¼
c

4p
k2?Az ¼ szzEz ¼ i

w2
pe

4pw
�@8=@z� @Az=c@tð Þ: ðA26Þ

From equation (A26), we can solve for the electrostatic
potential

8 ¼ Az

w
kzc

1þ k2x c
2

w2
pe

 !
: ðA27Þ

For the parameter range of our interest, i.e., bH << 1, the
dispersion relation equation (6) reduces to

wr ¼ kzVA 1þ k2x c
2

w2
pe

þ k2z c
2

w2
pH

 !�1=2

: ðA28Þ
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Substituting equation (A28) in equation (A27), we obtain

8 ¼ VA

c
1þ k2x c

2

w2
pe

 !
1þ k2x c

2

w2
pe

þ k2z c
2

w2
pH

 !�1=2

Az; ðA29Þ

From equations (A25) and (A27), we get

Ez ¼ �i
w
c

k2x c
2

w2
pe

Az: ðA30Þ

The energy of the wave is distributed into kinetic energy of
the particles (i.e., electrons and hydrogen) and field
fluctuations. Thus the time-averaged wave energy density is

W ¼ 1

2

1

2
mHnH vHj j2þ 1

2
mene

eEz

mew

����
����
2

þ
By

�� ��2
8p

 !
; ðA31Þ

where vH is the hydrogen perturbed velocity given by

~vH ¼ c

B0

W2
H
~E � b̂� iwWH

~E

W2
H � w2

 !
: ðA32Þ

[47] For the parameters corresponding to the mother
waves discussed in section 2.3, kx

2c2/wpe
2 � kz

2c2/wpH
2 and

w < WH so that the drift approximation for the hydrogen, i.e.
vH � �cr?f/B, can be used. Substituting for 8, Ez, and By

from equations (A29), (A30), and (A23) in equation (31),
we get

W ¼
By

�� ��2
8p

1þ k2x c
2

w2
pe

 !
: ðA33Þ

[48] For the parameters corresponding to the daughter
waves discussed in section 3, kx

2c2/wpe
2 � kz

2c2/wpH
2 and w �

WH. Hence vH cannot be simplified. In this limit, Ez is
negligible and the wave dispersion relation is given by

wr ¼ kzVA 1þ k2z c
2

w2
pH

 !�1=2

: ðA34Þ

Following similar algebra, it can be shown that the wave
energy density in this limit is

W ¼
By

�� ��2
8p

1þ k2z c
2

w2
pH

 !
: ðA35Þ

Appendix B: Calculation of the Second-Order
Current and Energy Transfer Rates

B1. Second-Order Current

[49] Here we calculate the nonlinear second-order current
for small amplitude oscillations (i.e., ~v? � w/k?). The
nonlinear current induces a second-order electric field E(2).
We consider the interaction of two short wavelength

mother waves capable of generating a long wavelength
daughter wave in accordance to the decay law described in
equations (18) and (19). The wave vectors of the mother
waves are along the x axis. The electric and magnetic
fluctuations associated with the linear and nonlinear
currents due to ion motion generated by the interaction of
mother waves define the daughter waves, and their
relationship is given in equation (24).
[50] The nonlinear current jx

(2) can be obtained from the
plasma momentum balance equation,

nmH

@~v

@t
þ ~v � ~r
� �

~v

� �
¼ c�1~j�~B: ðB1Þ

Using the continuity equation, we can rewrite equation (B1)
as

mH

@

@t
n 1ð Þ~v 1ð Þ þ n0~v

2ð Þ
� �

þ mH
~ri n0~v

1ð Þ
i ~v 1ð Þ

� �
¼ c�1~j 2ð Þ �~B0 þ c�1~j 1ð Þ �~B 1ð Þ:

ðB2Þ

We keep the first- and second-order terms and consider a
quasi-neutral hydrogen-electron plasma with nH � ne 
 n,
where the relatively small amount of the lithium is the
source of the wave energy. Small concentration of helium is
neglected. We can omit the second term in the left-hand side
of equation (B2) when calculating the second-order current
for the longwavelength daughter waves sincer? 
 ik?3! 0.
When k?3 is not negligible, then this term may contribute as
discussed later. Also, because the mother waves are weakly
electromagnetic [see equation (11)], we can neglect j1k1B1k2

in
the right-hand side of equation (B2). This leads to

j 2ð Þ
x ¼ �mHc

B0

@

@t
n 1ð Þ~v 1ð Þ þ n0~v

2ð Þ
� �

y
: ðB3Þ

[51] Now we calculate the ion momentum (n(1)~v(1) +
n0~v

(2))y/n0 with the assumption k?1 + k?2 = 0 and using
the normalized quantities, w/WH ! �w, kzc/wpH ! �kz, k?c/
wpH ! k, Exc/B0VA ! E, ~v?/VA ! ~v, and ~b0 = ~B0/B0. In
these normalized quantities, the ion motion and density are
described by the equations

@~v=@t ¼~v�~b0 þ~E � ~v � ~r
� �

~v; ðB4Þ

@n=@t þ ~rn~v ¼ 0: ðB5Þ

The solution of these equations can be found using
expansion over small amplitude of E,

~vk ¼~v
1ð Þ
k þ~v

2ð Þ
k

¼
~E

1ð Þ
k � ~v 1ð Þ � ~r

� �
~v 1ð Þ

� �
k

� �
�~b0 � i�wk

~E
1ð Þ
k � ~v 1ð Þ � ~r

� �
~v 1ð Þ

� �
k

� �
1� �w2

k

;

ðB6Þ

~v
1ð Þ
k ¼

~E
1ð Þ
k �~b0 � i�wk

~E
1ð Þ
k

1� �w2
k

; ðB7Þ
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n
1ð Þ
k

n0
¼ �ikE

1ð Þ
k

1� �w2
k

: ðB8Þ

In equations (B4)–(B8), the electric field has only x
component. Substituting E(1) = Ek1

exp(�iwk1
t + ik?1x +

ikz1z) + Ek2
exp(�iwk2

t + ik?2x + ikz2z) in equation (B4) and
keeping only the terms with k1 + k2 = 0, we get

~v 1ð Þn 1ð Þ=n0

� �
yk3

¼ �Ek1

1� �w2
k1

� � �ik2Ek2

1� �w2
k2

� �þ �Ek2

1� �w2
k2

� � �ik1Ek1

1� �w2
k1

� �
¼ k1 þ k2ð ÞEk1Ek2

1� �w2
k1

� �
1� �w2

k2

� � ¼ 0; ðB9Þ

~vx 1ð Þ � ~r
� �

~v 1ð Þ
� �

k3
¼ i ~vk1 �~k2

� �
~vk2 þ ~vk2 �~k1

� �
~vk1

� �
k3

¼ � k2�wk1 þ k1�wk2ð Þ~yþ i�wk1 �wk2 k2 þ k1ð Þ~xð ÞEk1Ek2

1� �w2
k1

� �
1� �w2

k2

� �
¼ k1 �wk1 � �wk2ð Þ~yEk1Ek2

1� �w2
k1

� �
1� �w2

k2

� � ; ðB10Þ

and

v
2ð Þ
yk3

¼
~v 1ð Þ � ~r
� �

~v 1ð Þ
� �

xk3
þi�wk3 ~v 1ð Þ � ~r

� �
~v 1ð Þ

� �
yk3

1� �w2
k3

¼ �i
k1 �wk2 � �wk1ð Þ�wk3Ek1Ek2

1� �w2
k3

� �
1� �w2

k1

� �
1� �w2

k2

� � : ðB11Þ

Equations (B9)–(B11) lead to

n 1ð Þ~v 1ð Þ þ n0~v
2ð Þ

� �
y
=n0 ¼ �i

k1 �wk2 � �wk1ð Þ�wk3Ek1Ek2

1� �w2
k3

� �
1� �w2

k1

� �
1� �w2

k2

� � ;
ðB12Þ

where ~x and ~y are the unit vectors along the x and y
directions, respectively. Substituting equation (B12) in
equation (B3), we calculate the normalized second-order
current,

�j
2ð Þ
xk3
=en0 ¼

k1 �wk2 � �wk1ð Þ�w2
k3
Ek1Ek2

1� �w2
k3

� �
1� �w2

k1

� �
1� �w2

k2

� � : ðB13Þ

[52] Equation (24) along with nonlinear current given
by equation (B13) can be solved iteratively to obtain
Ex
(2). Starting with Ex

(1) 
 Ek, we solve for the linear
frequency w3 with jx

(2) = 0. Expanding the LHS of
equation (24) near the resonant wk3

= w3, i.e., (�kz3
2 �

i�wk3
�sxx)�Ek3

(2) 
 ��D(�wk3
)�wk3

2�Ek3

(2) = ��wk3
(�D�w3 + (�wk3

�
�w3) @(�D�w3)/@�w3)�Ek3

(2) = i�wk3
�jxk3

(2) with �D(w3) = 0 and
using equation (B13), we obtain Ex

(2),

E
2ð Þ
k3

¼ �i
@ �D�w3ð Þ=@�w3ð Þ�1

�wk3 � �w3 � i�gð Þ
k1 �wk2 � �wk1ð Þ�w2

k3
Ek1Ek2

1� �w2
k3

� �
1� �w2

k1

� �
1� �w2

k2

� � :
ðB14Þ

We introduced a small growth rate g in order to avoid the
singularity at resonance. Also, note that �D = �(�kz

2/�wk
2) + 1/(1

� �wk
2) is D(w, k) defined in equation (14) in normalized

variables.

B2. Rate of Energy Transfer to Daughter Shear Alfven
Waves

[53] Now using Ek3

(2) and jk3
(2), we calculate the rate at

which the energy is pumped into the newly born daughter
wave by the mother wave,

d �W3

d WH tð Þ

� �
2D

¼ �j
2ð Þ
xk3
E*k3

2ð Þ
þ c:c:

¼ �Wk1
�Wk2 k1�w2

k3
�wk2 � �wk1ð Þ

� �2 �g=2

�wk3 � �w3ð Þ2þ�g2
; ðB15Þ

where the wave energy density, �Wk = (1/2)j�Ekj2 @(�D �wk)/@�wk

� j�Ekj2/(1 � wk
2)2, is normalized by (B0

2/8p). We label this
rate as two-dimensional because all interacting waves are in
one plane. If there is an ensemble of uncorrelated waves
(weak turbulence), then the net effect is the sum of the
individual interactions. If the resonance condition, i.e., wk1

+
wk2

= wk3
,~k1 +~k2 =~k3, and g � w is satisfied, then the net

effect due to the ensemble is

d �W3

d WH tð Þ

� �
2D

¼
Z Z

d~k1d~k2k
2
1 �w

4
k3

�wk2 � �wk1ð Þ2

� �Wk1
�Wk2pd �w ~k3

� �
� �w ~k1

� ��
��w ~k2

� ��
d ~k3 �~k1 �~k2

� �
: ðB16Þ

The wave coalescence rate in equation (B16) cannot be
obtained in the usual MHD framework. Also, this rate is
strongly dependent on the wave frequency and becomes
negligible for �w � 1. Estimating the integral in equation
(B16) under the assumption Wk1

� Wk2
, we obtain the

nonlinear rate

d �W3

d WH tð Þ

� �
2D

� �wk1 þ �wk2ð Þ3 �wk1 � �wk2ð Þ2�k21 �W 2
1 : ðB17Þ

According to the decay law, equations (18) and (19), we
have �wk1

� �wk2
� �wk3

/(�k1
2me/mH)

1/2. Hence

d �W3

d WH tð Þ

� �
2D

� ð�w5
k3

mH=með Þ �W 2
1 : ðB18Þ

B3. Rate of Energy Transfer to Daughter
Magnetosonic Waves

[54] Now we analyze the effects of the spatial derivative
term in equation (B2) that was ignored in previous section
when we calculated the nonlinear current for the case where
all the three waves are in the same plane and ~k?3 = ~k?1 +
~k?2 = 0. We estimate the contribution of this term for the
case when~k?3 is not negligible and is in the y direction, i.e.,
not in the (x, z) plane.
[55] This term, ry((�Ek1

� ~b0)(�Ek2
� ~b0))/(1 � �wk1

2)(1 �
�wk2
2), for a small wave vector~k?3 =~k?1 +~k?2 �~k?1 out of
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the plane (x, z) contributes a nonlinear current, which in the
normalized values is

�j
2ð Þ
xk3

en0
¼ �2i�ky3 Exk1Exk2ð Þ

1� �w2
k1

� �
1� �w2

k2

� � : ðB19Þ

The wave vector ky3 and nonlinear current jxk3
(2), which is

proportional to ky3, correspond to the magnetosonic
daughter wave. Similar procedure as above leads to the
estimate of the pump rate of the short wavelength mother
shear Alfven waves into the long wavelength magnetosonic
daughter waves with ky3 � wpi/c,

d

d W1tð Þ
�Wk3

� �
3D

¼ �j
2ð Þ
xk3
E*k3

2ð Þ
þ c:c:

¼
�Wk1

�Wk2
�k2y3

@ �DMS �wk3ð Þ=@�wk3ð Þ
�g

�wk3 � �wMS
~k3

� �� �2
þ �g2

; ðB20Þ

where �DMS = 1 � �ky3
2 /�wk3

2 is the normalized dispersion
relation for the magnetosonic daughter waves. For an
ensemble of such uncorrelated waves, we estimate the pump
rate into the long wavelength magnetosonic daughter waves
to be

d

d W1tð Þ
�Wk3

� �
3D

� �wk3
�W 2
k1
: ðB21Þ

B4. A Physical Explanation of the Origin of the
Second-Order Current

[56] In calculating the second-order current, we Fourier-
transformed the quantities, and in the process, some clarity
of physics was sacrificed. To illustrate the physics of the
origin of the second-order current, now we calculate this
current without resorting to Fourier transform. However, to
simplify the calculation, we will assume low frequency, i.e.,
w � WH so that 1 � �w2 � 1. The nonlinear current is driven
by the rate of temporal change of the plasma momentum
given by equation (B12). In terms of the mother wave
electric fields, the nonlinear force is given by

�Mn0
c~E �~b

B0

þ @

W@t
c~E

B0

 ! !
� ~r

 !
c~E �~b

B0

þ @

W@t
c~E

B0

 ! !
:

ðB22Þ

We assume that all the interacting waves are in one plane, the
(x, z) plane, and note that the spatial derivative on a second-
order quantity is proportional to k3 and hence negligible.
Hence the nonlinear force (B22) in this plane becomes

�Mn0
@

W@t
c~E

B0

 !
� ~r

 !
c~E �~b

B0

; ðB23Þ

and leads to the second-order ion inertial drift and
momentum,

�Mn0
@

W2@t

@

W@t
c~E

B0

 !
� ~r

 !
c~E �~b

B0

 !" #
: ðB24Þ

The rate of temporal change of this momentum induces the
nonlinear current [equation (B2)],

~j 2ð Þ ¼ �en0
@2

W3@t2
@

W@t
c~E

B0

 !
� ~r

 !
c~E

B0

 !" #
ðB25Þ

Consider the superposition of two waves, for example,
mother shear Alfven waves: Ex = Ek1

sin(wk1
t � kz1z �

k1x) + Ek2
sin(wk2

t + kz2z + k1x). Substituting this Ex in
equation (B25), we get

j 2ð Þ
x ¼ � en0

c2Ek1Ek2k1 wk1 � wk2ð Þ
W4B2

0

@2

@t2

cos wk1 þ wk2ð Þt � kz1 � kz2ð Þzð Þ½
þ cos wk1 � wk2ð Þt � kz1 þ kz2ð Þz� 2k1xð Þ� ðB26Þ

The induced long wavelength (averaged over x) non-
linear current is

j 2ð Þ
x =en0 ¼

k1 wk2 � wk1ð Þw2
k3

W4

c2Ek1Ek2

B2
0

cos wk3 t � kz1 � kz2ð Þzð Þ

ðB27Þ

This current due to superposition of two short wavelength
mother waves being in resonance, i.e., wk1

+ wk2
= wk3

, kz1 �
kz2 = kz3, gives rise to the long wavelength daughter shear
Alfven wave. In normalized values and in Fourier represen-
tation, it is identical to that in equation (B13).

Appendix C: Production of Neutral Clouds by
Impact

[57] It is found that approximately 9 kg of Ti/2B is
necessary to vaporize 1 kg of lithium (P. Zavitsanos, private
communication). This implies that a total mass of 10 tons
must be transported into the orbit. Proven technology can
accomplish this, but arguably, there is advantage in increas-
ing the energy yield for the same mass. Hence we suggest
utilization of the orbital kinetic energy of the lithium itself for
vaporization. To exploit this, we note that the specific
evaporation heat decreases as pressure increases. At pressure
and temperature over 680 atmospheric pressure and 3200 K,
respectively, the specific evaporation heat reduces to zero. In
such a high-pressure environment, the energy supplied will
be directly converted into the lithium internal energy. Such a
condition arises in an asteroid-planet impact and may be
replicated by colliding a lithium mass (a flux of lithium
granules) moving with the satellite velocity Vs� 7 km/s with
a heavy target moving in the opposite direction with the same
velocity. At collision, the solid lithium will be converted into
a hot lithium vapor expanding with an average velocity larger
than Vs depending on the lithium and target mass ratio. As the
neutral gas expands with high speed, it will rapidly cool
down, and a lithium cloud will be formed. The process of
condensation, which could lead to the formation of debris,
depends strongly on the impact velocity and vapor density
and can be avoided by designing the lithium granule flux to
be sufficiently low [Zel’dovich and Raizer, 2002].
[58] For example, consider the collision of a granular

lithium mass of 2.5 tons with an aluminum slab of the
surface area 30 m2 and a mass of 7.5 tons used as the heavy
target. These masses could be directed against one another in
Keplerian orbit in the equatorial plane for a controlled
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collision in the region of interest. The impact will raise the
pressure in lithium vapor up to a million times the atmo-
spheric level, and the orbital kinetic energy will be converted
into the internal energy of the materials involved. With this
internal energy, the lithium gas will expand with an average
velocity�Vs + 2Vcm, where Vcm is the center of mass velocity
of the colliding system. This corresponds to an average
energy of approximately 7 eV per atom. The resulting neutral
lithium cloud will expand in the equatorial plane mostly
outward under the influence of increased centrifugal force
since gas expansion in vacuum proceeds with different
velocity for different fluid element. Away from the impact
region, this expansion will create a moving thin sheet of
neutral lithium atoms, which will photoionize into a lithium
plasma and seed the electromagnetic turbulence in the way
we described earlier. However, the power (�100 MW) and
energy (�300 GJ) released in this case are an order-of-
magnitude larger because the energy of the injected lithium
atoms is much larger. Thus with same mass transported into
the orbit, it may be possible to deliver about an order-of-
magnitude more energy and power by the impact vaporiza-
tion method. This obviously is the major advantage of this
method. However, the technology involved in the impact
vaporization is not fully matured and will require fine-tuning.
[59] The collision will also vaporize the aluminum.

Because of conservation of momentum and energy during
the impact of light lithium mass with the heavy aluminum
target, the aluminum atoms will loose energy, while the
lithium atoms will gain energy. Consequently, the alumi-
num atoms will slow down and fall earthward because of
the action of gravity leaving behind the lithium atoms to
photoionize and form a ring distribution and generating
intense electromagnetic turbulence as discussed in the text.
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