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Scaling of the Beam Plasma Discharge for Low Magnetic Fields 

K. PAPADOPOULOS 

Department of Physics and Astronomy, University of Maryland, Colleoe Park 

A theoretical analysis of the scaling law and the value of the threshold current for beam plasma 
discharge (BPD) is presented, based on the requirement for an absolute instability near the plasma 
frequency. It is shown that both the scaling law as well as the numerical values of I½ are consistent with 
the experimental data, in the low pressure regimes and for weak magnetic field experiments (to e > f•e) if 
the dominant particle loss mechanism is due to Bohm diffusion. The implications of the findings to 
electron injection in space are discussed. 

1. INTRODUCTION 

Laboratory studies of energetic electron beam injection in a 
neutral gas filled vacuum chamber carried out in the large 
vacuum facility at the Johnson Space Center (JSC) [Bernstein 
et ai., i978, 1979, 1980] have provided important informations 
for the interpretation of data from space based electron beam 
injection. Perhaps the most important aspect was the determi- 
nation of an empirical relationship of the form [Kellogg et al., 
1982] 

Eb3/2 
I c • --•f(p) 

for the critical current lc required for beam plasma discharge 
ignition in terms of the values of beam energy (E•), ambient 
magnetic field (B), system length L, and ambient pressure p. 
The relationship is most commonly known in its low pressure 
form, 

Eb3/2 
lc • BXp• L 

which for the large vacuum chamber was valid for pressures 
P<po-20 /aT. The best fit to the data gave values of 
2 • 0.5-1 and/a • 0.5-1. For pressures above 20/aT the de- 
pendence of lc on pressure took the form lc • p•. Most of the 
data were obtained in the low pressure regime and a system- 
atic study of the high pressure regime has yet not been per- 
formed. Similar results have been reproduced in a number of 
other experiments [Konradi et al., 1983; Lyakhov et al., 1982; 
Bernstein et al., 1983; Kawashirna et al., 1983] in which the 
collisional ionization by the beam is sufficient to bring the 
plasma density of the system to the point that to e > f•e, where 
toe, f•e are the plasma and cyclotron frequency. 

Triggering of BPD has been long associated with a beam 
plasma instability between the electron beam and the beam 
generated plasma [Kharchenko et al., 1962; Getty and Srnullin, 
1963; Galeev et al., 1976, 1983; Linson and Papadopoulos, 
1980; Papadopoulos, 1982]. For to, > •r• e and finite size sys- 
tems Rowland et al. [1981] and Papadopoulos [1982], have 
associated the triggering of the BPD with the threshold for an 
absolute beam plasma instability near toe' As explained in 
Papadopoulos [1982] for systems such as the JSC tank the 
system length (L •< 20 m) is not long enough to allow convec- 
tive modes to grow to sufficient amplitude. The requirement 
that the waves grow at frequencies near toe, is connected with 
the fast rate of nonlinear energy transfer of the beam energy to 
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ionizing suprathermal electron tails [Papadopoulos and Coffey, 
1974; Papadopoulos, 1975; Papadopoulos and Rowland, 1978; 
Rowland et al., 1981; Galeev et al., 1983]. It is the purpose of 
this paper to develop a model for BPD ignition at low pres- 
sures and the expected scaling laws on the basis of the cri- 
terion for an absolute instability near toe' Notice that for sys- 
tems with toe < •"•e the toe waves are in the lower hybrid 
branch [Manickarn et al., 1975] in which case, in the absence 
of internal wave reflections, they always give convective ampli- 
fication. Our analysis therefore applies only to situations 
where toe • •r•e' 

The plan of the paper is as follows. We discuss next the 
beam plasma equilibrium expected on the basis of collisional 
ionization. Section 3 presents the instability theory for the 
configuration determined in section 2 and derives the thresh- 
old criteria. Section 4 presents a comparison of the model with 
the BPD ignition values determined in the JSC experiment. 
The final section summarizes the findings and discusses their 
applicability to other situations. The numerical values are 
given in MKS units except for the beam energy (keV), pressure 
(/aT), magnetic field (G), and density (cm-3). 

2. PRE-BPD DENSITY BUmmJP 

Before entering the instability analysis it is necessary to 
establish the equilibrium density profiles for the plasma during 
the collisional ionization stage. We assume that the beam den- 
sity profile is given by 

lb e -r2/a2 (la) nb(r ) = nbe-r2/az __ e V•a 2 
where lb and V• are the electron beam current and velocity 
parallel to the magnetic field and a the beam radius given by 

V• sin 0a 
a = • (lb) 

f•e 

where 0a is the effective divergence injection angle. The ef- 
fective divergence angle 0a has been defined so that it includes 
the beam spreading caused by the initial space charge neutra- 
lization processes [Linson and Papadopoulos, 1980]. The equa- 
tion for the ionization at midplane (i.e., ignoring the z depen- 
dence) is 

c3 n(r) 1 c3 c3 •n(r) lbNoa .... e -- r2/a2 (2) c3t r •rr rD •rr n(r) + L e•a 2 
where D is the diffusion coefficient, L the system length, N O 
the ambient neutral density, and a the ionization cross section. 
The term (•/L)n(r) describes the axial losses. Ignoring the z- 
dependence in both the beam and' the plasma can be easily 
justified for the pre-BPD stage of the laboratory experiments 
since the mean free path it for energy deposition is much 
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longer than the system size. The equivalent condition for 
space experiments will be discussed in our concluding re- 
marks. It is worth noting that if we average (2) over the 
volume we recover the zero dimensional description in terms 
of the confinement time z [Papadopoulos, 1982], i.e., 

d lb n 
d'• n = • Noa-- (3) eisa 2 

which gives the steady state value of the density as 

Ib 
n = • No a z (4) 

e•a 2 

The general solution of (2) in terms of the first and second 
order Bessel functions I o, K o is 

(_•) (r) n(r) = Ax!o + A2Ko • (5) 
with 

LD 
b • - (6) 

The constants Ax, A 2 are determined from the boundary con- 
ditions. In the thin beam limit (a << b), in which we have a line 
source, we find 

n(r)- 2-•eD Kø =- noK o (7) 
The more general solution gives, for regions inside the source 
(0 _< r _< a) 

( ) n(r) - IbNøa Ko [r -- r'[ exp (-r'a/a 2) dr' (8) 
eD?ra 2 b 

while outside the source (a < r < b) 

© n(r) = lbNoa Io exp (--r'2/a 2) r' dr' Ko (9a) 
edna 2 

Guided by the experimental results we restrict ourselves here 
to the thin beam limit a < b, which implies that (V• sin 
Oa)/• e < (D•/2L•/2)/•x. In this case the input parameters re- 

quired for the instability analysis are nb, no, a, and b and are 
given by (1), (6) and (7). The values of nb and no in the system 
units discussed in section 1 can be found from (1) and (7) as 

lbB 2 1 (9b) nb = 1.9 x 106 Eb3/2 sin2 0a 

n 0=3.2 x 10 s IbP 1 Eb •/2 D (9c) 
3. INSTABILITY THEORY 

The homogeneous interaction between the beam and the 
plasma is described by the dispersion relation 

•(k, co) = I + Kp(k, co) + Kb(k, co) = 0 (10a) 

where K v and Kb are the longitudinal dielectric functions of 
the plasma and the beam. Both K v and Kb can be calculated 
for any type of distribution functions including collisional and 
finite size geometry effects [Briggs, 1964]. We choose here 
models that allow us to emphasize the physics and avoid the 
mathematical complexity. Consistently with Rowland et al. 
[1981] and Szuszczewicz et al. [1982], we consider only the 
synchronous Cerenkov interaction of a slow beam wave with 

an upper hybrid wave 0`)0 of the cold plasma. In this case 
2 

coo 

Kv(k' 0`))= 0`)2 (lOb) 

0.)0 2 --- «(0`)e 2 4- •r'•e2 ) 4- [¬(0`)e 2 4- •r'•e2)2 -- 0`)e2{')'e 2 COS 2 0] TM 

(10c) 

0`)b 2 R COS 2 0 
/c,(&, co)= - (co - &,v•) • (10a) 

kz 2 
cos 2 0 = (10e) 

k: 2 q- kñ 2 

coe, cob and fie are the plasma frequency, beam plasma fre- 
quency, and cyclotron frequency respectively, and k 2-- kz 2 
+ kñ 2. The potential was assumed to have the form Jo(k•_r) 
exp [i(kzz- cot)] and thus the propagation is axial, with kx 

determined by the transverse geometry. The finite size beam 
reduction factor R enters through the boundary conditions at 
the radii a and b and is given in terms of Bessel functions by 
[Manickant et al., 1975] 

rc a Yo ( k .• b ) 

R = • (kña) • Yx(kñb• [Jø2(kña) + Jx2(kña)] (11a) ,, 

Jo(kñb) - 0 (11b) 

The value cobR •/2 cos 0 serves as a reduced effective beam 
plasma frequency. An important aspect of the dispersion (10) 
is the absorption øf the transverse wavenumber k• and geome- 
try effects into a, single parameter R. Therefore from (11), R is 
fixed when the mode r•umbcr and the ratio b/a is fixed. Figure 
7 of Manickant et al. [1975] shows the values of R as function 
of b/a for the fundamental mode. For large b/a >> 1, it has a 
logarithmic dependence approaching the value R = 0.1. 

In order to determine the conditions for absolute instability 
in our system we follow the techniques developed by Bers 
[1975], in the weak coupling approximation. For the beam 
waves the dispersion relation is 

0`)b 2 R COS 2 0 
Db(k, 0`)) = 1 - (0`) _ kzV•)2 = 0 (12a) 

From this we find the usual fast and slow waves given by 

0`) - kzV = 4-COb R1/2 COS 0 (12b) 

The slow wave is a negative energy wave while the fast is 
positive, i.e., 

20`) 

[/V b = 4- cobR1/2 COS 0 ¬•ø1%12 (12c) 
where W• is the wave energy, % the beam wave amplitude and 
eo the free space dielectric constant. The negative energy wave 
can couple in synchronous interaction with the backward 
positive energy upper hybrid wave to produce an instability. 
Notice that for the upper hybrid wave 

coo2(kz) 
Dv(k , 0`))= 1 cø 2 (13a) 

while the wave energy is 

20.) 

W• = coo(k•-• j •e01 evl 2 (13b) 
We examine now the situation where the slow wave of the 

beam interacts resonantly with the plasma wave coo. We find a 
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set of coupled equations 

) • dr' V b • dr' V b U b -- CbpU p 

) • + Vp • + Vp Up = Cp•U• 

(14) 

where %, Vp arc the group velocities of the beam and plasma 
waves and v•,, Vp arc phcnomcnological damping coefficients of 
the two waves. Up,b are the usual normalized amplitudes de- 
fined as 

• I%,d 2 (15) 

[Bers, 1975' Davidson, 1972' Weiland and Wilhelmson, 1977] 
and the coupling coefficients Cbp, Cpb are given by 

C• = --I•* J• _- _• 
(16) 

--¬œp* 'Jbp __ Ppb 

where Jp• is the perturbed plasma current that interacts with 
the beam and J•p is the perturbed beam current that interacts 
with the plasma. For conservative interactions 

Pbp = -- Ppb* -' -- Ppb 

From (12)-(16) wc find the growth rate 

(17) 

IP•pl l(.co•2Rcos20.) 1/2 -'- = - roo (18) 7 i W•W•l•/: 2 roo 2 
Absolute instability requires FBers, 1975] 

vt, Vp < 0 (194) 

y2 > VbVp (19b) 

L > (I v,v•l x/z) • -- Lc (19c) 
Y 

where L is the system size in the z•direction. The first con- 
dition enters through the requirement that the unstable pulse 
encompasses the orlgin at all times. The second from the re- 
quirement that the pulse growth exceeds the dissipation. The 
last is equivalent to the breakdown length L c of an oscillator 
and implies that the feedback is stronger than convective 
losses. Notice that in the absence of wave reflecting bound- 
aries only the upper hybrid branch can be absolutely unstable, 
since the lower hybrid branch corresP9nds to a forward wave 
(i.e., v•,Vp > 0). In a plasma with rodfie < 1, waves near the 
plasma frequency will bc convectively unstable. 

As mentioned in the introduction wc associate the threshold 

of BPD in the Johnson chamber with an absolute instability 
near rOe. For our parameters the collisional ionization gener- 
ates a plasma with rOe/•')-e •' 2, and the Collisionality is such 
that condition (19b) is trivially satisfied. We therefore con- 
centrate on (19c), for a backward wave in the upper hybrid 
range with rOe/•')-e >> 1. The group velocity of the waves vb, Vp is 

vb-- Vb 

Vp = --2V• --cos: 0 sin: 
rOe 2 

(20) 

The value of sin 0 can be computed using (10e) and the first 

root of(lib), i.e., kib = 2.4, giving 

1 
sin 2 0- (214) 

1 +g2 

g2 b2 rOe 2 - (2.4)2 V• 2 (2lb) 
From (18), (19c), (20) and (21) we find the criterion for absolute 
instability as 

O.)b2 > 2(2) x/2 (n• x/2 - L \no? •sin 0 (22) 
4. BPD IG•mON SCALING FOR LOW Pmsu•s 

Our conjecture associates the threshold for BPD triggering 
with the absolute instability criterion •ven by (22). This con- 
dition is a function of the beam and plasma parameters •ven 
by (9). From (9) and (22) we find the BPD triggering condition 
as 

I • I• m 1.2 x 10 -2 E•3/2 D•/2 (sin 0 sind pi/2 L R •/2 (23) 
In order to make further progress we have to specify the value 
and the scaling of the diffusion coefficient D. We assume here 
that for the low pressure regime p < Po the diffusion is domi- 
nated by collective phenomena and obeys the Bohm diffusion 
law. Therefore 

D•D• =6 x 102 • 
The assumption of Bohm diffusion is consistent with the mea- 
sured spectrum of low frequency fluctuations [Szuszczewicz et 
al., 1979] as well as the values of the diffusion they measured; 
for one set of parameters they measured values of D• • 2-9 
x 10 2 m2/s which are much larger than the ones expected on 

the basis of classical collisions, and consistent with Bohm dif- 
fusion with T• • 0.5-1.5 eV. From (23) and (24) with • • 0.5 
eV we find 

E•3/2 1 1(sub0sin0{) (254) I c = 0.3 pX/2 B•/2 L R •/2 
For values of g • 1, the factor in parenthesis is of the order 3, 
so that to within a factor of 2 the value of I c in amperes is 

E, 3/• 1 1 
lc- 1/2 B•/2 (25b) p L 

We proceed next to compare the predictions of (25b) with the 
'experimental values. The most detailed case has been the one 
analyzed by Kellogg et al. [1982] for E, = 1 keV, p = 5 gT, 
L = 20 m and B = 1 G in which case lc *x• = 20 mA. For these 
values (25b) predicts !, = 22 mA. The minimum current for 
BPD triggering was lc*•= 11 mA and occurred for E, = 1 
keV, p = 15 gT, L = 20 m, and B = 1.14. For these parame- 
ters (25b) gives lc = 12 mA. Table 1 compares the observed 
and predicted value of the threshold current in the chamber 
for various experimental conditions. The a•eement is rather 
satisfactory given the approximate nature of (25b) and the 
uncertainty in the experimental measurement of the pressure 
and I c. We can, therefore, conclude that the above theory is 
consistent not only with the empirical scaling for the low pres- 
sure regime but, also reproduces with relative accuracy the 
numerical values of the critical current. It is interesting to 
compare the predictions of (25b) with the threshold observed 
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TABLE 1. Comparison Between Theoretical Predictions and 
Experimental Results 

Eb ' ic ½xp, ic T, 
keV B, G P, #T mA mA Comments 

1.9 0.9 7-15 34 35-40 
1.9 0.9 7 34 53 
1.5 0.8 4 45 34 
1.5 0.8 8 34 24 
1.5 0.8 12 26 19 
1.5 1.14 4 40 28 
1.5 1.14 7 22 32 
1.5 1.14 15 12 22 
1.5 1.5 4 30 25 
1.5 1.5 2 50 35 
1.3 1.5 6-12 12 17-24 
1.3 0.9 7-15 28 20-30 
1 1.5 4 28 23 
1 1.14 15 11 12 
1 1.0 5 20 22 
0.8 0.9 8-15 7.8 9-13 
0.75 1.5 2 32 19 
1.6 38 100 8 12 
1.6 38 71 11 15 
1.6 38 50 26 18 
1.6 20 100 10 17 
1.6 11.5 100 20 23 
1.6 7.7 100 28 28 
1.6 5.5 i00 40 33 

large 
chamber 
results 
L- 20m 

small 
chamber 
results 

L-- 2.6m 

in a comparable experiment by Cabral et al. [1969]. For E• = 
1.5 keV, P- 5 x 10 -'•, B- 325 G and L- .45 m, the ob- 
served threshold current was IceXp= 16 mA while (25b) will 
predict Ic • 9 mA. We should also mention that (25b) was a 
good fit to the small chamber results of Konradi et al. 1-1983]. 

An approximate criterion for the ignition of BPD was given 
before [Rowland et al., 1981' Papadopoulos, 1981] and was 
found consistent with the observations at the J.S.F.C. tank 

[Szuszczewicz et al., 1982] as (.De/•"• e > 5. It is appropriate to 
comment on its relationship to the present more detailed con- 
siderations. Referring to (23) we note that Ic • sin 0 so that 
for sin 0 << 1, Ic becomes very small, independently of other 
considerations. From (21) sin 0 << 1 corresponds to 

b (D e 
O- >> 1 (29) 

2.4 V• 

which is the opposite limit t¾om the one considered before. 
Taking b •0(a) and using (la) we recover the condition 
(De/f•e > 2.4/(sin 0d) • 5 as an approximate condition at which 
absolute instability develops. This criterion is extremely rele- 
vant for cases with preionized plasma such as the ionosphere 
at daylight conditions or for high altitude injection (i.e., F 
peak). The (.De/[")• e > 5 criterion is a sufficient but not a neces- 
sary condition, and accounts in a natural fashion for the ob- 
served hysterysis during BPD extinction [Bernstein et al., 
1979]. 

Before closing this section we should comment briefly on 
the scaling for the high pressure regime. If we assume that 
similar physical considerations, i.e., absolute instability at (De, 
determine the value of lc in this regime also, then a change in 
the scaling would imply that the higher collisionality changes 
the scaling of D or the scaling of the growth rate 7 or both. 
The absence of detailed information in this regime makes a 
quantitative theoretical study impossible. We mention here 
only that Papadopoulos [1984] conjectured that the transition 
is caused by transition of the diffusion in the high pressure 
regime from Bohm (D•) to classical (Dc). The ratio Dc/D • • 
(TeX/2p)/B. Therefore instead of the scaling given by (25) we 

find 

Eb 3/2 
I½ ~ • T, TM 

BL 

Namely the critical current scales as lIB rather than lIB •/2 
and I½ is independent of the pressure instead of lip TM. In 
order for I½ to increase monotonically with pressure T, ~ p. 
Whether such a relationship is justified depends on the scal- 
ings of the heating rates and the heat conduction processes. 
Such a study will be justified after more detailed data become 
available. 

5. SUMMARY AND CONCLUSIONS 

We have presented a detailed physical analysis of BPD 
threshold scaling based on the conjecture proposed by Papado- 
poulos [1982], that the BPD threshold is associated with the 
triggering of an absolute instability near (De. This conjecture 
predicts a scaling 

Et• 3/2 
1½ • • 

p•/2B•/2 L 

The predicted scaling and the numerical values of I½, as well as 
the dominance of Bohm diffusion in the low pressure regime 
are in agreement with the data from JSC tank experiment 
[Bernstein et al., 1979; Szuszczewicz et al., 1979]. It is impor- 
tant to restate some of the key assumptions of the theory and 
their consequences, since many were inspired from the JSC 
tank parameters and might not be applicable to other situ- 
ations. 

1. Weak magnetic field in the sense that at prebreakdown 
(De/fie >_ 2. For situations where (De/fl e < 1, the m, waves lie in 
the lower hybrid branch of the dispersion curve which corre- 
sponds to forward waves and therefore produces convective 
instability. The expected scaling should be derived from differ- 
ent considerations. The case •, < w, < 2•,, requires special 
consideration due to the presence of strong cyclotron damping 
which was neglected here. Note also that end plate reflections 
can produce an absolute instability even in the lower hybrid 
branch. 

2. Thin beam in the sense a << b. For situations where 

a • b, axial losses could be dominant and the more general (8) 
and (9)should be used instead of (7). 

3. Weak coupling limit (14) are valid in the limit where the 
parameter (w,/w,) •/2 • (n,/no) •/2 << 1. Otherwise the saddle 
point method [Le Queau et al., 1980] should be used to deter- 
mine the threshold condition given by (22). 

4. In associating the threshold for absolute instability with 
the BPD ignition we implicitly assumed that the energy depo- 
sition from the beam to the plasma will produce ambient 
electron fluxes whose ionization rate exceeds the beam ioniza- 

tion rate. This seems to be clearly satisfied in the low pressure 
regime. However as noted in Papadopoulos et al. [1983] by 
increasing the pressure there is a limit at which the energy 
deposition by the beam plasma instability is not sufficient to 
overcome line emission so that the electron energy stays below 
the ionization energy. This case will have many of the BPD 
signatures (i.e., broadening of the irradiated region) but the 
electron plasma density will be controlled by beam ionization 
only (i.e., BPD without D). The small chamber experiment 
[Bernstein et al., 1983] is possibly indicative of such behavior. 

Before closing we should comment on the applicability of 
the above concepts to electron beam injection in space. There 
are two fundamental differences between the laboratory and 
the ionospheric beam injection: (1) the existence of ambient 
plasma with long density gradient scales (i.e., L• •) in the 
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ionosphere; (2) the laboratory experiments are steady state, 
while the vehicle motion across the magnetic field line can be 
thought as producing beam pulses with time length z- U/a 
where U is the cross-field motion of the vehicle (i.e., 1-2 km/s 
for rockets, 4-8 km/s for the shuttle). 

In assessing BPD for the ionospheric case we have to ask 
the following questions' 

1. Is the plasma density produced by the collisional ioni- 
zation due to the beam during t << z, larger than the ambient 
ionospheric density ? 

2. Is there a beam instability at toe based on the ambient 
ionospheric plasma density? 

3. Is the ionization time due to the hot electrons produced 
by the instability shorter than the injection time z (i.e., rio n 
•: >> 1)? 

If the answer to question (1) is yes and to question (2) no, 
the threshold condition is similar to (25), with the length L 
given by the plasma density gradient due to collisional ioniza- 
tion by the beam. In view of the short injection time, however, 
(25) is sufficient only for the beam plasma instability (BPI) but 
not BPD. In order to have BPD we need in addition to (25) a 
positive answer to question be given by (22) with no the value 
of the ambient plasma density. BPD requires in addition Vion 
• > 1. The above comments should be only taken as guide- 

lines. More precise considerations require nonlinear BPI com- 
putations for the evaluation of Vion as a function of the beam 
parameters and will be reported in the future. 

During the refereeing period, Llobet et al. [1985] confirmed 
the above results in a detailed study in the small chamber. 
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