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The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed.
Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are
three different regimes in the evolution of the tail. The tail can be (a) stable with electrons
accelerated to large parallel velocities, (b) unstable to Cerenkov resonance because of the depletion
of the bulk and the formation of a positive slope, (c) unstable to the anomalous Doppler resonance
instability driven by the large velocity anisotropy in the tail. Once an instability is triggered
{Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The

role of a convection type loss term is also discussed.

I. INTRODUCTION

Electron acceleration by a dc electric field has been the
subject of many analytic and numerical investigations. The
presence of high-energy tails has been observed in tokamaks
and the Earth’s auroral zones. Such tails could also be re-
sponsible for many radio bursts during solar flares. Earlier
studies on the dynamics of dc electric field acceleration-®
have shown that tails formed by sub-Dreicer dc electric
fields are unstable to the anomalous Doppler instability and
that they relax toward isotropy in two stages. A positive
slope region is formed at the leading edge of the tail by pref-
erential pitch-angle scattering of the more energetic elec-
trons at the anomalous Doppler resonance; this drives
bump-on-tail plasma instabilities and relaxes quasilinearly.

In a recent numerical study, Wiley et al.? showed that
runaway tails, dynamically driven from a Maxwellian distri-
bution, are marginally unstable. Howeyver, since their veloc-
ity grid was limited to velocities v<10 — 15 v, (where v, is
the thermal velocity) they made an analytic parameteriza-
tion of the distribution functions obtained from their simula-
tions for vy < 10v,, and extrapolated the shape of the distri-
bution function to higher velocities. This extrapolation
resulted in an erroneous result, because they missed the in-

stabilities that can be triggered either via the Cerenkov or the
anomalous Doppler resonance. Muschietti ez al.'® showed
that at some stage during the dynamic formation of the
runaway tail a positive slope appears on the runaway distri-
bution. This in turn excites plasma waves via the Cerenkov
resonance, which at a later time stops the acceleration of the
runaway particles along the ambient magnetic field (v).
Pitch-angle scattering of the fast particles by the excited
plasma waves then leads to an isotropic quasisteady-state
distribution. For this reason it was suggested' that any con-
sideration of threshold for instability is unreliable. The
anomalous Doppler effect triggers the instability only when
a particle source prevents depletion of the bulk distribution
and the appearance of the Cerenkov instability.

We constructed a quasilinear code similar to the one
used by Muschietti ef al.'® and reexamined the dynamic for-
mation of runaway tails. We found that in a relatively large
vy domain (8 v, to 60 v, ) the runaway tail will sometimes
trigger the anomalous Doppler or Cerenkov instability even
in the absence of any particle source. The process was a sensi-
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tive function of the dc electric field (E,) and the (cyclotron

frequency to plasma frequency) @, /@, ratio. Our compu-

tations demonstrated that for a given .. /), ratio and po-

tential drop, particles can be accelerated to higher velocities

with a weak dc field (i.e., potential distributed over long dis-
tance) rather than with a strong dc field. As will be explained
later, these results indicate that for systems where particles
are lost when the value of v is larger than a critical velocity
value v,, there will be a threshold for instability. The particu-
lar case where v, = 60 v, corresponds to a stability boundary
similar to the one discussed by Liu and Mok® for a particular
range of Eo/E ,, where E'p, is the Dreicer field, and o, /@),

ratios. Computations also show that for a particle loss rate of
1/v (e.g., if the confinement time 7 = L /v, where L is the
scale length of the system) a power law runaway distribution
function results.

In Sec. II we present the model equations and the main
assumptions of our study, and in Sec. III we discuss our
numerical results. The role of particle losses is analyzed in
Sec. IV, and our summary and conclusions are presented in
Sec. V.

Il. QUALITATIVE CONSIDERATIONS AND MODEL
EQUATIONS

Consider a homogeneous magnetized plasma, cylindri-
cally symmetric about the ambient magnetic field, with infi-
nite mass ions, in the low density regime o, >w,.. Here
o, =eB/mc is the electron cyclotron frequency,
w,e = (4mne’/m)'’? is the plasma frequency, ¢ is the speed
of light, and n,, m, and e are the electron density, mass, and
charge, respectively. If a dc field E,, is applied to the plasma
along the magnetic field, electrons with velocities greater
than a critical velocity v, = (E,/E,)"/?V, can overcome the
drag force caused by collisions and run away."! The runaway
electrons can resonantly interact with two different modes of
plasma oscillations: the lower-hybrid (LH) mode
w; =wy k) /k and the upper-hybrid (UH) mode
o = |@|(1 + @,k } /2w, k?). In the low density regime,
the growth rate of the LH waves is larger than the growth
rate of the UH waves by a factor of o, /w,, [e.g., see Ak-
hiezer et al.'?). For the sake of simplicity, therefore, we will
consider only the LH waves in our study. The wave—particle

w
interaction can take place via the Cerenkov resonance
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FIG. 1. Positions of the Cerenkov and cyclotron resonances in relationto v,
andv,.

@y = kv, and the cyclotronresonance w, + nw,, = kv,
where n is an integer either positive ({the anomalous Doppler
resonance} or negative {the normal Doppler resonance). For
waves propagating in the same direction as the runaway tail
(k > 0), the positions of the Cerenkov and the first harmon-
ics of the cyclotron resonances (n = 1, — 1) in relation to v,
and v, are shown in Fig. 1. For a Maxwellian plasma, the
number of electrons that will resonate with the waves via the
normal Doppler resonance is negligible.” Therefore we will
ignore the normal Doppler interaction. Also, for o/
@, >1 the contribution from higher harmonics to the
growth rates and the diffusion coefficients will be smaller
than the contribution from the first harmonic by a factor of
n?. The higher harmonics will also have much higher phase
velocities. Therefore, only the n = 1 harmonic will be kept in
the equations, restricting our study to the anomalous
Doppler resonance at velocities vy ={w, + @)k,
0./ k.

We normalize our parameters as follows: 6 =v/v,,
k=kip, t=1t0,, f=f/n/v), W= W /4mn,TA}, and
@, = 0./, . Here A, is the Debye length, T is the am-
bient plasma temperature, and W the wave energy density.
For the sake of convenience we omit, below, the bar from the
dimensionless quantities. The quasilinear diffusion equa-

tion, including a model collision term,"’ is given by
9 _ 3 pof
+( a _y ) (r7f L _0"_.£)
g 9f
oa”n T v V(v" (v“f+ e f) )

where v{v;) =vo{1 +v})7%? is the collision frequency,
S=/flv)w,,t), and

Dofvy 1) = 2”L|.>0 (‘;;1)\73 (_I%__)2

k
W, (t)5 (_Jf_ . ) @
o d3k [k
Dlowti=3], o anp ( )
X Wt )( 101) Slwe — kyvy)- (3)
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The spectral density |E, |* will evolve through the equation

W, (t)
at

= v+ 1 - 2)Hute) @)

where the growth rates caused by the Cerenkov and the
anomalous Doppler interactions are given by

T k af [k
~Ffenng! () ®)
and
, __.k_.a, vk (af_ﬂ.c?_f_)
k dv, v, Iy,
kv \?
x(; ) B0 — Kyt ©

Notice that in our units the dc field is normalized to
(47nT)"'%; therefore the quantity 2E,/v, is the dc field nor-
malized to the Dreicer field and (vy/E,)!/? is the critical ve-
locity v,.

Two important observations can simplify the construc-
tion of the quasilinear code and the illustration of the wave—
particle interaction regions shown in figures for f(v,) and
W, . First, the Dirac functions involved in the diffusion coef-
ficients and growth rates do not depend on v, . Therefore, the
distribution function in the perpendicular direction may be
treated globally. We will use a moment approach in the per-
pendicular direction assuming, a priori, a Maxwellian shape
for the electron distribution in that direction. Therefore,

P )
2T,(e))
Second, the growth of the waves depends on the net growth
rate ¥, + ;. It is thus difficult to recognize which insta-
bility, Cerenkov or anomalous Doppler, drives the unstable
modes. To overcome this difficulty, at least during some
stages of the runaway tail evolution, one can be guided from
the linear analysis. Namely, knowledge of the most unstable
modes for each instability (the modes with k, =0 for the
Cerenkov and the modes with k, /k | =2 for the anoma-
lous Doppler) and a three-dimensional picture of the wave
spectrum may be helpful in this matter. Another useful tool
is the projection of the wave spectrum onto v, space, which
can show clearly the regions in vy space where the wave-
particleinteraction takes place either via the Cerenkov or the
anomalous Doppler, or both. We will use two separate pro-
jection operators, (v, — k ~') and 8(vy — @,./k ), to pro-
ject Wi (k ,k, ,t) onto v space. The two spectra represented
by I, and I, are

Slogvt)=1 1) 51771—'—(-t_) exp( -

- %k — k!
Lty t)= Lpo @27y Wilky ko 0oy —k=7) ()
and
Il t)..J a4’k W, (k, .k t)a(v ———‘”“). (8)
DY » "> (2 )3 LN R S I k"
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One can clearly see that the total fluctuation energy is

d’k
k>0 (2 )3

= ZJ; IC(B" ,t}dvu = ZJ; ID(UI} ,t) dv” .

We)=2 — Wi lkykyst)

lli. NUMERICAL MODEL AND RESULTS

A quasilinear code based on the Ritz—Galerkin method
and special finite elements'®**'¢ was constructed. As men-
tioned, the distribution function in the direction perpendicu-
lar to the magnetic field was taken as Maxwellian and there-
fore a moment approach was used in that direction. In the
parallel direction a kinetic description was kept, and in the
semifinite velocity domain [ — 8 5{v,/v,) 560, 0<v, < ]
the form of the distribution function was assumed to be

N
Sloyy,t) = ‘;lf; (e Wily)

( v )
exp|l —— .
2 T(r)

Here ¢, (v, ) is the basis function (roof function),'® f;(¢) and
T,(¢) are the values of f (v ) and T at ith grid point, respec-
tively, and &V is the number of divisions in equally divided v,
space. Equations (1}{6) were discretized according to the
scheme prescribed in Ref. 14. Depending on the value of the
dc field (and accordingly the critical velocity v, ), N was cho-
sen so there were enough points to represent a relatively
smooth Maxwellian distribution. In order to discretize the
wave spectrum, the finite k space was divided into small
rectangles with different sizes.

The rate equations for the field energy were solved in &
space. To provide a uniform distribution of modes in terms
of their resonant phase velocity, it was necessary to use a
nonuniform distribution of modes in k space. This is, of
course, simply because of the fact that v, is inversely propor-
tional to k. In our case, the spacing of the £ modes is compli-
cated by the fact that we need to provide sufficient coverage
for two different resonances—the Cerenkov and the anoma-
lous Doppler. The parallel velocity domain was divided into
N cells of width Av stretching from — 8 v, to v, . Since
below v, the waves are heavily damped by the thermal back-
ground, the modes with v, <v, were excluded. To accurate-
ly treat the Cerenkov resonance (vg =k "), ky was spaced
so that there was a resonant k| in each Av between v, and
Vmax - For the anomalous Doppler resonance (v, = o,k ),
the interaction region stretched from @ v, 10 vy, . The den-
sity of k ; modes in this region was increased by w,, over that
required for the Cerenkov resonance. This again ensured
that there is a resonant & ; for each Av, and defined the spac-
ing of themodesin k . For each k ; there were modes cover-
ing the k, direction from k, =0 to k, =~0.15. The typical k-
space grid used was (100, 20). The discretized wave spectrum
was assumed to have a form

Z Z Bim Ky KL

I=1 m=1

X
27T,(¢)

Wy (kykyst) = JWim(t)
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where ¢, (k; .k, ) is a piecewise constant basis function
in the rectangle numbered Im,

1,
$im Ky ’kl)zl 0, elsewhere.

A leap-frog scheme was used to advance fi{t), T;{¢), and
W, (1} in time similar to the scheme prescribed in Ref. 15.
Considering four consecutive times #;, ¢,, ¢, and 7, and
knowing f (v ,t,), Ty (v ,1), and W (k .k, ,2,), we find f and
T, att;, and W, at t,.

Since different time scales are involved in the dynamic
evolution of the runaway tails,'® we let the time steps
At, = t; — ¢, and At, = ¢, — t, adjust themselves automati-
cally to fit the dictated time scale. Assuming Af{ =1, —¢,,
At; =t;—t,, and At)=1t,—1t;, and considering
At} = aAt} and At} = aAt}, where a = [(10 + 1)/10]'/2,
we achieve fast time step adjustment without destroying the
centering of the times ¢, and #,. Starting with a Maxwellian
distribution for f(vy,v,,¢=0) and thermal noise for
W, (t = 0), we made several runs with dc fields of different
strengths (0.08 to 0.45 Ey) and o /@, =(2 to 5). For
strong dc fields (E/Ep R 0.12), the evolution of the wave-
particle system was qualitatively similar to the one reported
by Muschietti ef al.'® However, for dc fields E,/E S0.1,
the instability of the system (in the chosen velocity limits)
depends on v, /w,. . In fact, as we will discuss in Sec. III B,
the instability was triggered at the anomalous Doppler reso-
nance.

In the following we first analyze the evolution of the
distribution function and wave spectrum for the electric field
values E; =0.2 Ep, and E, = 0.1 E,. We then discuss the
threshold for the instability and present results showing the
dependence of the current, the runaway rate, and the num-
ber density of the runaway particles on the value of E,,.

A. Strong dc fleld (£, /£, = 0.2)

In this run, the system was initialized with a Maxwellian
distribution for the electrons and white noise for the wave
spectrum [ W, (k;,k,,t = 0} = T, where T is the tempera-
ture of the bulk]. The time step adjusts itself automatically to
the runaway growth time, with an upper bound of (1/200} 7,
(where 7, = v ! is the collision time). During the first 170
7., a long runaway tail with a small negative slope on the
plateau portion of the tail develops. As the tail reaches high-
er v values, a small positive slope appears on the runaway
tail. Formation of this positive slope is caused by the bulk
depletion and the decrease of the drag force on the particles
as they are accelerated. The positive slope excites Langmuir
waves and relaxes quasilinearly, leaving behind a flat tail
distribution [(df/dv)|, ~14,=0] and a spectrum of
waves that are centered at phase velocity v, ~ 14 [Fig. 2(a)].
As can be seen at the time of the appearance of the wave
spectrum, the lower edge of the /1, spectrum is far away from
the leading edge of the tail. This indicates that the waves are
excited via the Cerenkov effect and there is as yet no interac-
tion between the excited waves and particles via the anoma-
lous Doppler effect.

Asthe tail stretches in vy space, 7, remains almost equal
to 1 and the wave spectrum is sustained (and broadened in
the course of time) on the runaway tail, until the leading edge
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FIG. 2. Electron distribution function and wave spectrum at six different times. /, and I'y, are projections of the wave spectrum onto v, space via Egs. (7) and
(8). {a) Onset of turbulence. (b) The runaway tail reaches the I, spectrum. (c) Few collision times after the tail stops growing. (d) Relaxation period of the
distribution function toward isotropy. (¢} Final stage of the tail retraction. {f) Quasisteady state. Parameters used are E/Ep, = 0.2, @, /o, = 3, v/

Wy 2 107°,

of the tail reaches the lower edge of the I, spectrum [Fig.
2(b}]. At this time, strong pitch-angle scattering occurs for
the fast particles that satisfy the Doppler resonance condi-
tion. The tail stops expanding in vy. In a very short time (a
few collision times), the waves with phase velocities below
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the lower edge of the I. spectrum, being excited via the
anomalous Doppler interaction, are Landau damped to set
up a real plateau in that portion of the tail [Fig. 2(c}]. After
the formation of a plateau below the lower edge of the I,
spectrum, which can support the waves excited via the
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anomalous Doppler effect, for a very short time [about (1/
20) 7,] an interplay between anomalous Doppler effect and
Cerenkov effect isotropizes the distribution function. '

In the isotropization process, the pitch-angle scattering
of the fast particles by the waves, which is a nearly elastic
process,'” increases the perpendicular kinetic energy of the
fast particles at the expense of their parallel kinetic energy.
Therefore this process diffuses fast particles backward in v
space, resulting in the formation of a small bump at the outer
end of the plateau.” The flattening of this small bump by the
Cerenkov effect results in the redistribution of the electrons
with high gyration energy and excitation of the waves all
along the plateau. In this manner the tail shrinks slowly
while 7} increases along the tail. Since during the isotropiza-
tion process the system is unstable to both the Cerenkov and
the anomalous Doppler instabilities, the waves are excited
via both effects (y,> 0, ¥, > 0). A typical distribution func-
tion and wave spectrum during the isotropization process is
shown in Fig. 2(d). At the end of this stage the distribution
function is characterized by a short tail beyond v, in the
parallel direction with a large temperature in the perpendic-
ular direction [Fig. 2(e)]. The runaway tail has a very small
positive slope [df(v))/dv, =107°] between v, and
vp = w,. U, and it is isotropic beyond vy, :

Foy)=Fvp)exp[ — (v} —vb)/2T. ], vy>vp. (9)

After the establishment of the plateau boundaries at v, and
vp the excited waves with phase velocities v, <v,, <vp are
damped by the collisions in a few collision times. The wave
level decreases by a few orders of magnitude but it does not
drop to the noise level {Fig. 2{f)]. The system reaches a quasi-
steady state during which, while the distribution function
remains isotropic, the energy provided by the E,, field goes to
the waves and in turn via collisions the energy returns to the
thermal reservoir. Using. Eq. (9) we calculated f(v) for
v, > Up . The numerical values and the values from Eq. (9) are
shown in Fig. 3 at two different times: at the time of the
establishment of plateau boundaries, and after the damping
of the excited waves by collisions (quasisteady state}. The
close fitting of Eq. (9) and our numerical results indicates
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FIG. 3. Electron distribution function beyond v, = (@../@p, Jv.- Square
marks and circle marks are from Fig. 2(e) and Fig. 2(f), respectively. The
solid lines are the values obtained using Eq. (9).

3360 Phys. Fluids, Vol. 28, No. 11, November 1985

080 T 200 (0}
xi0™® xio-3
- +-50x10° wpe
> 040f H100 +5
- (8]
—
000 00
1000 4
=
H
00%.73 096 264 432 8,00
Vi x10
STV s )
060 1-80x10%wpy 150
= A
5 odof N 4100 =
+~ H o
020 i 450~
000 ‘ 00
1000} i
=t
000 L t ' >
-0.73 086 264 432 6.00
Vi xof

FIG. 4. Electron distribution function and wave spectrum (noise level) at
two different times. Here, I, and I, are projections of the noise {white noise}
onto vy space via Egs. (7} and {8}. (a} A typical state during tail growth. (b}
Final state of the system. The leading edge of the tail has reached vy, = 60v, .
The parameters used are: E/Ep = 0.1, 0, /0, = 3, vo/w,, =107°.

that we have reached the quasisteady state and the formation
of the isotropic distribution discussed above.

B. Weak dc fleld (£,/E, = 0.1)

1. 0o/ ®pe =3

Starting again with a Maxwellian distribution and noise
spectrum, a runaway tail with 7|, ~ 1 grows out of the Max-
wellian distribution. It takes about 800 7, until the outer
edge of the tail reaches to v = 60. As the tail grows its slope
remains negative [3f(v)/dvy = — 1.X107°, at fly)
~4x107*] and the wave spectrum stays at the noise level
[Fig. 4 (a) and (b)]. Although thereis a large anisotropy in the
distribution function (7' » T, ), the runaway distribution is
stable because of the presence of the negative slope.

2. 0/ Wpe =2

For this case, a runaway tail, similar to the one in Sec.
III B 1 grows out of the Maxwellian distribution. The wave
spectrum stays near noise until the leading edge of the tail
reaches the velocity v =50 v,. At this moment one of the
oblique modes [k, /k | ~tan (54°)] starts growing. This stage
is shown in Fig. 5. At the time that the instability starts
growing there is a negative slope on the velocity distribution
flvy) at v; =v, (v, is the phase velocity of the growing
mode). However, there are enough particles near the outer
end of the plateau to sustain y; + ¥, — vo/2 > 0. The growth
of the mode with (k } /k 7} = [tan (54°))* =2 indicates the in-
stability of the most unstable waves to the anomalous
Doppler effect. Therefore, the turbulence is triggered via the

Moghaddam-Taaheri o a/. 3360

Downloaded 22 Jan 2011 to 129.2.19.102. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



0.0l T T T 40
x103 o - X072
- t=826X10%wp, A
= \
> I
2 oall 720 =2
g
0.00 0.0
110,00} s
: =N
0'090.73 0.96 264 432 600
x10'
Vi

. 8
TIME= B26000 107 \WAVE SPECTRUM

FIG. 5. Typical electron distribution and wave spectrum at the time of the
start of instability via the anomalous Doppler effect. Here, I, and I, are
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via Egs. (7) and (8). The initial growing mode is at an angle of 54° with respect
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anomalous Doppler resonance considered in the analytical
studies discussed in the introduction. The only difference
between some of the analytical treatments** and our nu-
merical result is that here the waves with v, ~15v,, which is
about 3v,, start growing (unlike the analytical studies where
it is assumed that the unstable waves will have v, =v,).

After the start of the instability, the particle distribution
evolves toward isotropy in a fashion similar to the one dis-
cussed for the strong dc electric fields above.

C. Threshold for instability, runaway rate, maximum
velocity, and current

1. Threshold for instability

In many real systems, particles that reach very high ve-
locities can be lost from the system (e.g., because of imperfect
magnetic surfaces). To model this, we considered a limited
v, in our numerical computations (v max = 60 v, ). The fol-
lowing discussion on the instability threshold is based on this
consideration.

Several runs with dc field values ranging from 0.45 E
to 0.07 Ep,, ./, ratios of 2 to 5, and v, = 10™° were
performed. We found four different regimes in the evolution
of the runaway tail (shown in Fig. 6).

Regime I: The evolution of the wave particle system was
discussed in Sec. ITIA and by Muschietti et al.!° A positive
slope caused by the depletion of the bulk is formed at the
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FIG. 6. Stability boundaries when the maximum v, boundary is 60 v,. In
regions I and II, instability is triggered via the Cerenkov effect. However,
for the tails that are formed in region II, pitch-angle scattering of the fast
particles cannot be triggered. In region III the instability is triggered via the
anomalous Doppler effect. In region IV the system is marginally stable.

beginning, plasma waves are excited, and the anomalous
Doppler shifted waves pitch-angle scatter the edge of the tail.
The final stage is an isotropic distribution.

Regime II: The positive slope develops for large velo-
cities and the anomalous Doppler shifted spectrum is outside
the v} nax =260 v, . The particles do not reach the anomalous
Doppler shifted waves and the pitch-angle scattering is not
triggered.

Regime I1I: The tail stretches to high velocities (~50v, )
and maintains a negative slope, but the anomalous Doppler
instability is triggered by the large velocity anisotropy in the
tail. The tail subsequently relaxes to an isotropic distribu-
tion, in a fashion similar to the one discussed in Sec. IIT A.

Regime I'V: The runaway tail maintains a negative slope
and the wave spectrum remains at the noise level until the
leading edge of the tail reaches the v} ,,,, velocity.

2. Runaway rate

Using the numerical values for f(v,), the number of
runaway electrons and the runaway rate are computed using
the equations

Anlr) _ fwf (vy2) dvy,

ho

o200 0 ()

where n, is the initial density. Figure 7 shows the time evolu-
tion of I for a range of E,,. At the beginning of the tail forma-
tion, I" reaches a maximum. During this initial stage the
evolution of I" agrees with the simulations made by Wiley et
al.® However, because of bulk depletion, the runaway rate
decreases from this moment forward.

In Fig. 8 we show the dependence of the maximum
runaway rate ([, .. ), I';, (where tu refers to the value of the
runaway rate at the time of the appearance of positive slope
on the runaway distribution), and the classical runaway rate,

-2 () e -3
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FIG. 7. Evolution of the runaway rate I" for different dc fields.

where 2(E,/v,) is the dc field normalized to £, on E,,. As
can be seen, 4 is smaller than the corresponding numerical
runaway rates I' ., and I',, . The reason for this increase in
the runaway production rate is that at the start of the tail
formation the shape of the distribution function (which is not
considered in the analytical calculation of 4 ) near v, = v,
deviates considerably from a Maxwellian distribution in
such a way that more particles can overcome the drag force
caused by collisions and run away (Fig. 9). Also, part of the
increase can be attributed to the Landau damping of Lang-
muir waves near v, =v,, (which can be excited via the
anomalous Doppler interaction) that pull more particles out
of the bulk. In Fig. 10 the dependence of An/n, vs E, is
shown. Although the runaway rate increases with the in-
crease in E,;, the maximum velocity that the particles achieve
decreases (see below). These two parameters control An/n,
in such a way that it reaches an asymptotic value (which
depends on v, /@, ).

3. Maximum velocity (Vmax)

We have shown that the pitch-angle scattering of the
fast particles by the excited waves does not allow the tail to

%10
025 T

oz0}

0.5+

.10+

RUNAWAY RATE

005+

007 ol7 0.26 0.35 0.45
E./E,

FIG. 8. Runaway rates versus dc field: A—maximum values of the curves in
Fig. 6, B—at the onset of turbulence, C—classical.
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FIG. 9. Deformation of the distribution function near v ~v. at the time of
tail formation.

stretch beyond a certain velocity. In Fig. 10 we plot maxi-
mum velocity v,,,, as a function of E, for o /w,, = 3. We
found that the maximum velocity increases as the E, de-
creases. In fact, for E,<0.1, the tail can practically stretch
beyond 60 v, .
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FIG. 10. Dependence on dc field of a) resistivity 7 (normalized to the classi-
cal resistivity 7,) and current I; (b) number of particles in the tail An/n, and
maximum velocity that the leading edge of the tail can reach before the start
of pitch-angle scattering.
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4. Current and resistivity

Although the number of runaways prior to the tail re-
traction increases with the increase of the dc field, the parti-
cles can not be accelerated to as high a velocity. In Fig. 10 we
show the dependence of the current (at the time that the tail
stops growing in v, ) versus E,, where the normalized current
is computed using the equation

J= Lwd”n oS )

In the range of 0 < E,<0.25 the current increases with in-
crease in E,. In the range 0.25 to 0.35 it has a maximum
value, and then drops for £, 0.35. The behavior of the re-
sistivity 7 = E,/J vs E, is shown in Fig. 10.

IV. PARTICLE LOSS

In the analysis presented above we assumed that parti-
cles are lost only when they exceed a maximum velocity
(V) max)- We now introduce a convective loss term in Eq. (1)
by subtracting the term f (v, )/ from the right-hand side of
Eq. (1), where 7 =L /|y, | and L is the scale length of the
system. Using a strong dc electric field value, E, = 0.3 E
and . /@, = 3, we found that, depending on the length L
of the system, the runaway tail may evolve in three different
ways.

(i) For L > 5X 10°A p, the evolution of the wave—particle
system is the same as for L = «, and the particle loss term
does not prevent the appearance of the positive slope on
runaway tail during its formation. Therefore, the excitation
of plasma waves via the Cerenkov effect during this stage,

T
8 -l -
121.3%10% wpe

_20 '—|°
Ys
L]

%o

00

(a)

()

-076 044 .64 284 4-0?
3 (0]
Viu

FIG. 11. Typical electron distribution function and wave spectrum (noise)
when there is a convection loss term f{v;)|v, |/L in Eq. 3: (a) L = 3 X 10
Ap, (b) L =2X10° 1. Other parameters used are E/E, =0.3, o,/
w,, =3, and vo/w,, 1075,
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which pitch-angle scatters fast particles in the leading edge
of the tail at a later time, prevents the tail from stretching too
far in v space. The evolution of the system is similar to the
one discussed in Sec. IIIA.

(if) For L £ 5X 10° A ;,, alarge number of energetic parti-
cles are lost and a power law tail develops on the distribution
function

Fo) v vy >0,
where S is time dependent. A typical distribution function is
shown in Fig. 11(a).

(iii) For 5} 1084 5, <L <5X 10°4 ;,, asituation arisesin
which, despite the fast bulk depletion, the slope of the
runaway tail remains slightly negative. Therefore a large
number of particles can be accelerated to very high velocities
[Fig. 11(b)].

It is obvious that with smaller dc electric fields (E,~0.1
to 0.2 E,) where the bulk depletion is not as fast as for
E,=0.3 Ep, it is possible to arrive at marginally stable
runaway distributions even at very large L sizes. The impli-
cation of these results on astrophysical plasmas will be dis-
cussed elsewhere.

V. SUMMARY AND CONCLUSIONS

We studied the dynamic formation of runaway tails in
magnetized plasmas using a nonrelativistic quasilinear nu-
merical code base on the Ritz—Glarkin method. This study
was carried out for different sub-Dreicer dc electric fields
and with . /@, ratios ranging from 2 to 5. Assuming that
particles with velocities v, > 60 v, will escape from our sys-
tem, we have reached the following conclusions:

(1) There are four different regimes in the evolution of
the runaway tails. In Regime I (shown in Fig. 6) the electric
field is strong and the rate with which electrons diffuse from
the bulk to high velocities cannot compete with the accelera-
tion rate at the tail. As a result, a positive slope is formed on
the tail that excites a spectrum of plasma waves through the
Cerenkov resonance. The average phase velocity of the excit-
ed plasma waves approaches the bulk of the plasma as the dc
electric field approaches the Dreicer field. In this regime the
projection of the plasma waves onto v space by the projector
8 (@ — kv ), which is the anomalous Doppler shift of the
excited Langmuir waves, is below 60 v, . As the leading edge
of the tail reaches this spectrum, the particles are pitch-angle
scattered. This results in an increase in the perpendicular
kinetic energy of the fast particles and formation of a small
bump at the leading edge of the plateau. Excitation of the
plasma waves by the positive slope diffuses the electrons
with high gyration energy toward the bulk, which raises the
perpendicular temperature along the tail, This interplay
between the anomalous Doppler and the Cerenkov reson-
ances continues until the tail distribution is isotropized. For
weaker electric fields, the positive slope caused by the bulk
depletion is shifted to higher velocities and the anomalous
Doppler-shifted spectrum is above v, = 60 v,. In this case
(Regime IT in Fig. 6) the tail remains stable. For weak electric
fields and w,, /@, <2 (Regime III), the runaway tail excites
the anomalous Doppler instability first and the isotropiza-
tion proceeds in a fashion similar to the one discussed for the
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Regime I In Regime IV, where o, /0, >2 and Ey/
E, %0.1, the tail remains stable until the leading edge of the
tail reaches v; = 60 v, . This indicates that for a given w../
w,, the runaway electrons can achieve higher velocities by
weak dc fields than by the strong dc fields.

(2) For a given w,, /w,, ratio and a conserved number of
particles, we found that the average runaway rate is larger
than the value estimated by the classical runaway rate. We
offer two explanations for this discrepancy: (a) The distribu-
tion function deviates from the Maxwellian distribution
function near the critical velocity at the start of the tail for-
mation, This change on the velocity distribution allows more
particles to run away. (b) Another cause for the higher
runaway rate is the Landau damping of the waves near v,
that were excited by the anomalous Doppler resonance.

(3) The runaway current density (at the time that pitch-
angle scattering of the fast particles starts) has a maximum
value at E;~0.3 E .

(4) We showed that a particle loss term modeled as
S{vy vy /L, where L is the size of the system, will greatly
affect the system evolution if L<5X10° A, (for E, =0.3
Ep).ForL <5x10% A and E;,<0.3 E 5, a power law tail is
formed and a large number of electrons are accelerated to
high velocities.

The model used in this study treated the detailed shape
of the electron distribution in vy, but the transverse velocity
distribution was represented by a T, . Rowland et al.'® pre-
sented the first simulations of the effects of the anomalous
Doppler instability on a runaway tail that was formed and
driven by a parallel dc field. These simulations employed a
self-consistent electrostatic particle code that followed all
three velocity components. Both the parallel and perpendic-
ular velocity distribution were represented by simulation
particles. This paper presented a model based on strong tur-
bulence anomalous resistivity to explain the acceleration of
auroral electrons by parallel dc fields. While the dc field used
in these particle simulations was much larger than E,,, the
scattering and perpendicular heating of the runaway elec-
trons was qualitatively the same as in the simulations report-
ed here. One of the key observational characteristics of this
process is that the electrons are first accelerated parallel to
the magnetic field forming a strongly field aligned beam.
When they are accelerated above a critical velocity (or ener-
gy), pitch-angle scattering will act to isotropize the beam.
Lin and Rowland!® recently reported the observation of
such two-step acceleration of auroral electrons by the Atmo-
spheric Explorer-DI) satellite.

Our work is based on nonrelativistic quasilinear equa-
tions; thus we restricted our calculation on velocity
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(v) <60 v,). Depending on the thermal temperature of the
bulk, our upper velocity boundary can be relativistic (e.g., in
tokamaks, the thermal temperature is so high that even elec-
trons with velocity ~20-60 v, will be relativistic). It is ob-
vious that relativisitic effects will play a significant role in the
tail dynamics since, as electron velocity approaches the
speed of light, the particles will pile up. This may destabilize
the runaway tail even for weak dc fields. This work is clearly
beyond the scope of our present study. We have also ex-
cluded the effect that a finite plasma will have on the excited
waves. It has been shown analytically’®?! that oblique
modes can convect out of the system and modify the behav-
ior of the runaway evolution.
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