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The nonlinear stabilization of the kinetic stage of electron beam plasma instabilities by parametric effects is
investigated. It is found that within a definite range of plasma parameters parametric instatilities induced
by the beam generated waves can stabilize the system at a level of wave energy density substantially lower
than expected by quasi-linear theory. This occurs because at a certain level of beam-generated plasma
waves, the transfer rate of wave energy outside the spectral region in resonance with the beam exceeds the
beam plasma instability growth rate. A model of a quasi-steady state for the case of continuous beam
injection is proposed. The possibility of utilizing uitrarelativistic electron beams for achieving ignition

temperatures in a tokamak is discussed.

i. INTRODUCTION

The interaction of low density beams with a plasma
has been studied extensively with the neglect of nonlinear
effects!’? due to the ambient plasma. In this approxima-
tion the energy of the oscillations excited by the beam is
comparable to the initial beam energy and the role of
nonlinear interactions reduces to the transformation of
the spectrum appearing in the final stage, A similar
point of view was taken in some recent computer simula-
tions®® of the nonresonant beam plasma interaction in
which case the beam plasma interaction was stabilized
first by trapping the beam electrons and the nonlinear
effects due to the plasma simply transformed the final
spectrum.

In this paper, it is shown that stabilization of beam in-
stabilities is possible in a region of parameter space
due to similar nonlinear effects such as discussed in
Refs. 3 and 4, The result will be that the beam may
pass through the plasma without any large broadening in
velocity space and with little energy loss, In the pres-
ence of constant electric fields the beam can actually be
accelerated., This has several important consequences
in the utilization of relativistic electron beams injected
in toroidal geometries® to provide the additional heating
required to go from Ohmic to ignition,” In addition it
provides a natural explanation for several nonthermal
features of space phenomena such as the type III radio-
bursts, ® particle and field distributions, and anomalous
resistivity of the auroral plasma,®!? etc,

The physics behind the stabilization process is that
above a certain level of beam-generated plasma oscilla~
tions in the region of phase velocity in resonance with
the beam, the spectrum in itself becomes unstable and
transfers energy into phase velocity regions nonresonant
with the beam, When such a process takes place in a
time interval less than the characteristic time for the
generation of the beam waves, the level of wave energy
resonantly interacting with the beam remains low at all
times and the beam state does not change much.

Tsytovich and Shapiro!! investigated the influence of
induced (nonlinear) scattering of plasma waves by ther-
mal jions (nonlinear Landau growth) as a possible mech-
anism for nonlinear stabilization of the beam instability,
while Rudakov'? proposed that induced scattering on
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thermal electrons might be dominant for the case of
ultrarelativistic electron beams. However, the validity
of these results is restricted by the conditions of valid-
ity of weak turbulence theory which implies that they are
correct only if W/nT <<(kx,)?, Here W and nT are the
wave and plasma energies per unit volume, k%, is the
wave number typical of the spectrum, and A, is the
Debye length, The nonlinear transfer rates found by
such restrictive conditions are, in general, too small to
affect the beam-plasma interactions in most situations
of interest. This is especially true in the case of con-
tinuous beam injection which results in an even higher
level of plasma waves.? When W/aT > (kgr,)?, the non-
linear broadening of the frequency spectrum Aw/w,

~ W/nT becomes more important than the dispersive
properties of the plasma waves due to their kinetic en-
ergy, which is of the order of Aw,,,/w,~3(ko2,)%. This
can be seen from the dispersion relation w?= w? + 3%V 2,
since the presence of density fluctuations such that 6n/
n= (kOXD)2 introduces turning points trapping the plasma
waves in the low density regions. Since Tén=W or &n/
n=W/nT, oscillations with short wavelengths kX,
~VW/nT can be produced. These waves have lower
phase velocities and can interact with the ambient par-
ticles,

This picture is physically similar to the recently dis-
cussed parametric instabilities.’® Parametric instabil-
ity theory has revealed, in addition to the usual decay
type instabilities where a plasma wave decays into
another plasma wave of higher phase velocity and a
sound wave, *!® the existence of aperiodic instabilities
where the new waves are a plasma wave with lower
phase velocity and a nonlinearly modified purely grow-
ing ion density fluctuation.!®* This last interaction is
actually the dominant process if the frequency of the
pump wave is near the plasma frequency (w,) as is usu-
ally the case with beam plasma instabilities. Notice
that in this case the new plasma waves due to the lower-
ing of their phase velocities can interact more efficient-

‘ly with the ambient plasma and produce anomalous heat-

ing or tails.

The aperiodic instability, usually called the oscillat-
ing two-stream instability can be related to the induced
ion scattering since both result from the interaction of
two plasma waves with ions, In analogy with the beam
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plasma interaction®' one can view the induced scattering
as having two stages, the kinetic and the hydrodynamic,
The kinetic stage corresponds to a resonance of the
beats of two plasma waves with a small group of reso-
nant plasma ions (W,,; = W, = (k; — kK, - V) (nonlinear
Landau growth) and it is usually called induced scatter-
ing. The hydrodynamic stage of this interaction de-
scribes the case where all the plasma particles nonreso-
nantly participate in the interaction. It is this stage
that is described as the oscillating two-stream or mod-
ified decay instability or when the computation is per-
formed in real instead of wavenumber space as spikon
or plasma soliton formation, In order to avoid confu-
sion in nomenclature we will keep the name oscillating
two stream for the second process and only refer to the
first one as induced scattering. Induced scattering on
ions or electrons, which has been considered as a pos-
sible nonlinear stabilization mechanism'®>™ is a thresh-
oldless process, with small growth rate y,; < Aw, kc,
(Aw is the width of the spectrum as seen by the ambient
plasma, and ¢, is the ion sound speed) and results in
wave transfer to higher phase velocity or simply in
change in the direction of the phase velocity of the wave'?
(i.e., tends to isotropise the spectrum). Oscillating
two-stream-like processes including the modulational
and the modified decay instabilities occur at pump am-
plitudes larger than a threshold., The value of the
threshold depends on the damping rate of the daughter
waves and the frequency mismatch between the pump
and the daughter waves, As shown in Ref. 15 and 16
the growth rate 7,, > Aw and the direction of spectral
transfer is toward lower phase velocities where the
waves can interact resonantly with particles and create
fast tails. We should also mention that although the
warm beam plasma interactions create a spectrum with
large width Ak, the frequency spread as seen by the
plasma is Aw =17, Ak which is small since v, < V,.
Therefore, the coherence condition between pump waves
and ambient particles (i.e., 7, > Aw) can be satisfied
without requiring very large pump amplitudes, An ex-
tensive discussion of these points can be found in Ref,
15 and 16.

In this paper we shall examine the possibility of non-
linear stabilization of the resonant beam plasma inter-
actions by ambient ion nonlinearities, We treat the non-
linear mode coupling effects by using the hydrodynamic
equations for the ambient plasma and averaging over the
“fast time”'® w;'. This type of description contains the
oscillating two-stream and the decay instability, but
not the induced scattering which is consistent with the

philosophy of the paper.

Since our purpose is to demonstrate the physical
mechanisms which are operating, we are considering
the interaction of a nonrelativistic beam in a homoge-
neous one-dimensional space which implies either a
strong longitudinal magnetic field or that the transverse
modes which grow very fast have been stabilized by a
small transverse temperature spread.* Extension of
these results to the case of relativistic beams with finite
angular spread is presented at the end of the paper. We
again stress that we are interested in the case where the

beam has a substantial thermal spread AV,/V, > (n,/n,)"?,
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where V,, AV, are the beam and speed and thermal
spread and »,, n, are the beam and plasma densities.

In case this condition is not satisfied at the beginning,
our theory describes the second stage of the interaction,
namely any energy exchange between the beam and the
plasma after the cold beam instability is stabilized by

trapping. **

In Sec. II we present our basic mathematical model
and reduce it to a more tractable set, Section III ex-
amines the stability properties of a spectrum of long-
wavelength plasma oscillations. The conditions for
stabilization of the beam plasma instability in one shot
injection are derived in Sec. IV. The case of a steady
state injection and its consequences form the subject of
Sec. V. Section VIdeals with application of the theory
to space and laboratory experiments. Section VII ex-
amines the possibility of utilizing beams for heating of
toroidal devices, Finally, we summarize our results in
Sec. VIIL

1. BASIC NONLINEAR EQUATIONS

Consider the interaction shown in Fig, 1. The evolu-
tion of this system including mode coupling terms can
be described by the following set of equations'®~'":
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where v, v;, are the total (collisional and collisionless)
electron and ion damping, (}) is the electron (ion)
mass, On(k) is the ion density fluctuation, and the c, is
the sound speed. We proceed to describe the physics
and the assumptions involved in the previous set of
equations. Equation (1) is simply the usual quasi-linear
interaction of the beam with the waves it generates,
with the resonant diffusion coefficient D, given by Eq.

Fo

np. Fp avy
0 Vp
Beam plasma interaction geometry in velocity space.
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(6). It is derived under the assumption that the particles
see random phased waves, which is readily satisfied for
the resonant instability waves.! Equation (2) is simply
the equation for the amplitude of mode » with phenom-
enological damping v,, growth rate y, given by Eq. (5},
and mode-coupling terms, Notice that v, is different
from zero only for waves in resonance with the beam,
Equation (3) describes the evolution of the ion density
fluctuations. In deriving Egs. (2) and (3) we have
averaged over the fast time w;!, neglected the electronic
nonlinearity,'® and described the motion of the elec-
trons and ions on the basis of hydrodynamic equa-

tions, '*''%1® These equations properly describe the
oscillating two stream and decay interactions but not the
nonlinear Landau damping, although they can easily be
extended to include it. (For a more detailed discussion
of these assumptions see Refs. 15~17.) Finally, Eq.

(4) is added to describe the possibility of resonant dif-
fusion of ambient electrons if the oscillating two-stream
operates and transforms the spectrum to low phase
velocities, The value of @, in Eq. (7) simply describes
the resonant width of the interaction in the Dupree-
Weinstock sense.!® At this point we should mention that
in a numerical solution of the system Egs. (1), (4), and
{6) can be replaced by one diffusion equation of the form

3 3 oF
wrew (oa ).
with F=F, + F, and D given by Eq. (7), but with @, being
interpreted as the larger of the vy, or the resonant width.
The only assumption involved in this description is that
particle trapping is nowhere important, We are actually
in the process of finding numerical solutions of the set

for situations of interest, However, the predominant
physics can be found by the following simplified analysis.

We consider the wave spectrum as being composed of
two groups of plasma waves and ion waves W,. Group
1 consists of waves resonant with the beam which can
be amplified. Group 2 consists of nonresonant waves
which can grow only due to the mode coupling terms,
Then, neglecting collisions we can use instead of Egs.
(1)—(4) the following set:

aW;

Tl =21 W) = 2%, (W)W, , (9)
9

6?’2 =2v (W)W, , (10)
BW

3t ZVZ(WI)WS 3 (11)
8 . 8mf B (Wl a_F_p_)

s T W\ ) (12)
v, :_L _V.L_ 2w (13)
1 AVD e

with W=[dk | E,|?/87. W, , represents the wave energy
density in groups 1 and 2. The value y, represents the
average growth of group 1 due to the beam, ¥,(W,) rep-
resents the transfer rate from 1 to 2. For the time
being from Egs. (9)-(12) and assuming y,(W,), as known
we can determine the value of W, at which the beam in-
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stability is nonlinearly stabilized and from Eq, (12) the
new time scale for quasi-linear diffusion. The calcula-
tion of y, will be the subject of the next section. Be-
fore closing this section we should point out that the
values of ¥ and W are defined in an average sense for
each wave group.

Il. LINEARIZED THEORY

The transfer rates y,(W,;) and the region of spectral
transfer can be found by considering the stability of a
spectrum of plasma oscillations (Fig. 2) on the basis
of Egs. (2) and (3), neglecting collisional effects and
assuming thermal noise in the rest of the spectrum.
The dispersion relation for such a system was found in
Ref. 16 and is given by
3 m (kAp)t

2 2 2
(@ =Fc)+ 7 37 T,

4 jdk' W, (%')

XAF WE(RAp)t —[w = 3(kAp) (' Ap)w, P} =0 (14)

Given the spectrum W, (k') one can find, by numerical
means, the rates and regions of spectral transfer. This
is in itself very useful for the evaluation of turbulent
spectra, and it will be presented elsewhere.'® For the
purpose of the present paper it is sufficient to notice
that if w=w, + 7y as long as

Fknp)* + 72> [wy = 3k 2y Vw0, | (15)

one can neglect the dependence of the denominator in
the integration parameter of Eq. (14). This is equiva-
lent to taking the spectrum W(g') =6(’). The dispersion
relation then becomes

)4 m W1

(W —R2c%) +3 (b2, i

w3 [1 @3 (kAp)* ~ w?]™ =0,

(16)
which is the same as the one found in the theory of para-
metric instabilities!*'® with a pump at w, in the dipole
approximation. In this sense one can consider (15) as
the condition under which the dipole approximation can
be applied to the stability of a spectrum of plasma
oscillations, Equation (16) only has purely growing
solutions, with typical growth rates given by

Ya(Wy) = (%)”2 <%}—>”2 @, . )

From Egs. (15-(17) we find that for Ak, <k, this result
is correct as long as

s (S) e, 2 (18)

Wi

AK1XD

A

[0} Kixg
FIG. 2. Spectral distribution of primary plasma waves gen-
erated by the beam.
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The inequality (18) can be considered as a modified
threshold condition for the spectral transfer of the
plasma waves to be toward the low phase velocity region
with transfer rate given by (17). Since for any beam
plasma interaction of interest Eq, (18) is easily satis-
fied, we further restrict our analysis to this regime
[notice that typically (2,2,)% <107%]. For unusual cases
where Eq. (18) is not satisfied, one should use Eq. (14)
to determine the spectral transfer properties.

IV. NONLINEAR STABILIZATION

We proceed to examine the dynamics of beam plasma
instabilities for the time dependent case (one shot in-
jection) on the basis of the results of Secs. II and III.
Assuming that we are in the regime given by Eq. (18),
Egs. (9) and (10) become

%{1 =aW, —eW}'2W,, (19)
¢}
—;-:/—2:€W11/2W2. (20)

In Egs. (19) and (20) we are using the following dimen-~
sionless parameters:

w m\ /2

2
o M Vo o
a=2 <AV,,) on e

If we introduce a new time variable defined as

t
T:fo W/3(t) dt, (21)
Egs. (19) and (20) become
_851;7_; =a W% - eW,(0) exp(eT), (22)
Wo(7) = W,(0)exp{eT), (23)

where W,(0) is the initial noise level.

On the basis of this set of equations we can sketch the
evolution of the system in parametric space 7 (Fig. 3).
W, increases as a®7? (this dependence corresponds to
an exponential increase in ¢} until the contribution of
the second term of Eq. (22) becomes significant. The
wave energy W, reaches a maximum W, at the value
of 7 given by

a W

eXp(€ T*) = 'E" WZ(O) o (24)

The value of this maximum is given by

o [ a Wi >2
- = = Dmax 25
Winax o (111 < W,(0) (25)

or
2
a2
Winax = Ea— A% (26)
where
a wilz
A=ln — —@ma | 27
W,(0)
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Subsequently, the oscillation energy W, will decay ex-
ponentially while transferring energy to W,. The
eventual stationary state as described by (19)—(23) will
be accomplished with W, -0, W,—- W,_,., and W,~0.
This, of course, is an erroneous conclusion due to the
assumptions involved in deriving these equations. The
first obvious defect is that we assumed that the pump
waves W; are larger than W, which, of course, breaks
down at the time 7, (Fig. 3) At this point the nonlinearity
of the waves W, becomes equally important to W;,. In
addition, ion fluctuations W, increase in parallel with
Wy in accordance with Eq. (11). The presence of non-
thermal density fluctuations results in an enhanced
resistivity around the plasma frequency as discussed
by Dawson and Oberman.!® As we shall see in Sec. v,
this can have a profound effect on the stationary state
of the beam plasma interaction. Another defect is that
the W, waves might start interacting with some ambient
particles; i.e., the appropriate stdtionary state re-
quires use of the complete set of equations (1)—(8).
However, some extremely important conclusions with
respect to the efficiency of the interaction of a beam
with a plasma can be derived on the basis of the pre-
vious results with respect to the value of W, ,,, for the
case of a single shot injection, The results relevant to
the stationary injection will be examined in the next
section.

If the dynamics of the system were correctly described
by quasi-linear equations until stabilization, the energy
transfer would have been very efficient {(1>0. 3), where
the efficiency 7 is defined in terms of the beam energy
€, as

n= . (28)

The distribution function of the beam forms a plateau
with AV,/V,~1, within a time {,,=n,/n, (in units of w;!)
and W{= 1 n,€, while another } n,€, goes to oscillatory
energy of the ambient particles and the rest remains
with the beam particles. We can now draw the following
obvious conclusions. For the case W{*<W,_,,, the non-
linear effects cannot stabilize the interaction and max-

imum transfer efficiency occurs with a value given by

i 1 N}
. T
T

FIG. 3. Schematic of the evolution of W; and W, in parameter
space t. (Notice semilog scale.)
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W
-7 29
o g€y (29)
However, for the opposite case (W,,, < W) the efficien-
cy will be given by

W,
=1 W’T;‘:‘ . (30)

In addition, one can find the thermal spread of the beam
in this case. It will be given by

@B1)

with ¢* determined from 7* and the inverse of Eq. (21),

t= f -—77(7- (32)

We should note that the results of Eqs. (31) and (32) will
not be influenced by the nonlinearity due to W, and the
interaction of W, with the plasma particles which will
only influence the distribution of the W, between par—
ticles and waves and the final spectrum of turbulence, #°
Application of these results to specific situations in the
laboratory and space will be discussed in the final sec-
tion,

V.STEADY STATE INJECTION

The analysis of the previous section led to an unphys-
ical asymptotic state due to the neglect of the nonlinear
effects induced by the finite amplitude of the parametri-
cally generated waves. Therefore, these results are rel-
evant for the case of single shot experiments; that is,
when the beam injection time {; is of the order of the
nonlinear stabilization time {*, However for stationary
injection experiments (f,> ¢*), most of the energy trans-
fer occurs at times larger than £, when a stationary
state is established. The purpose of this section is to
examine possible stationary states with the inclusion of
the nonlinearities due to the parametrically generated
waves and the nonequilibrium state of the particles. A
correct time dependent solution to this problem can only
be provided by the numerical solution of Eqs. (1)-(8).
Here, in the spirit of this presentation we shall attempt
a simplified phenomenological approach, based on the
marginal stability of the nonequilibrium system. We
should point out that the nonlinear saturation mechanisms
that will dominate have an extreme dependence on the
parameters of the problem at hand. For this reason the
analysis to be given should only be considered as an ex-
ample of how a nonlinear state can be achieved if the
particular mechanisms considered dominate, rather than
a general state resulting in any beam plasma instability.

On the basis of the previous section the wave spectrum
will be given by [Fig. 4(a)],

Wik, w) = Wy(k)8[w - wil (k) )+ W F(k, w) (33)

where W¥ (B, w) are the parametrically generated waves
WPk, w) = Wolke)o {w? - [wi* (k) F}

+ W) {w? - [w3 (k2))7} (34)

where w}’, w2 are the nonlinear frequencies due to the
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presence of the finite amplitude waves (i, e., we, s=We,s
+Awy,, where Aw™ is the frequency shift). These and
the values of W,;, W,, and W, will be determined later.
The nonequilibrium state of the particles will be given

by Eq. (4). The nonequilibrium solution of this equation
was discussed by Papadopoulos and Coffey, ? where it
was shown that the electron distribution function develops
non-Maxwellian tails so that [Fig. 4(b)]

F (v)=F¥(V,)+BF 1(v) , (35)

where F ;' is a Maxwellian and $ is the normalized den-
sity of the tail. These results are quite insensitive to
the exact parameters of the system when (18) is fulfilled
in the initial stage. This can be seen from the following
simple physical arguments. From the linear dispersion
relation we can see that the growth rate (17) can be larg
er than the linear electron Landau damping only for v,
23V,. Thus, since we have assumed that the trapping
width is small, the total number of particles that will
diffuse in velocity due to W, are 8=~¢™®~ 107, and they
will exist only in regions where W(k)#0, which in our
case corresponds to vy, < V,, under the assumption that
decay interactions which tend to populate the v,, > V, re-
gion can be neglected.?! We should notice that these re-
sults have subsequently been rigorously confirmed by
Weinstock and Bezzerides, %

1

We proceed to examine the modification of the disper-
sion properties of the system due to the presence of the
nonthermal features given by Eqs. (33)-(35). First,
consider the high frequency waves. The presence of the
parametrically generated waves W*(k,, w) produces both
a real frequency shift and a nonlinear damping of the
electron plasma waves. They can be determined from
the nonlinear dispersion relation given by23 (in dimen-
sionless units)

€k, w)= €'k, w)+ = 3 f fdw 'Sk, wy k', 0 YW, 0,

(36a)
w ELECTRON PLASMA
WAVES
A n /\
Kz 0 K Kz K
Wg ION FLUCTUATIONS
" J\
-Ka o} K2
(a)
Fo
Fy Fr Fyp
I — A
~ug/Kz we /Kp we /Ky W

(b)
FIG. 4. Nonlinear quasi-steady state of beam-plasma system.
(a) Spectral distributions of electron plasma waves (W) and ion
fluctuations (W,). (b) Particle distributions.
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where €’(k, w) is the linear dispersion relation and S(%,
w; k', w') is given by

_ Ve, w; B/, w ) Vk -k, w —w'; b, w)
e -k, w=-w)

+Ck, wy B, w7y, (36b)

Sk, w; k', ')

with
Vik, wp ', w)= l—fdv(kv—w)" 2 {70 —w"?
e ik v

+{(k-kW—(w-w)]}F, (), (36c)

Clh,w;k',w") :%fdu(kv -w)? 8—?) [(k =P = (w-w)]?

[0 = ') (kv = w) ]} FL). (364)

In Egs. (36c¢,d) we have neglected the contribution of the
ions since we are examining the high frequency waves,

2
ov

In the present work we neglect the real frequency
shifts in the high frequency oscillation since Aw™/w,
~§ W/nT<<1, and since the relevant parameter is the
frequency mismatch between them which is essentially
unaffected. In addition, since both F, and ¥ vanish at
v=0, nonlinear Landau damping between two plasma
waves does not occur since their beat frequency is zero.
In this way the predominant nonlinear effect is the cou-
pling of the beam waves with the density fluctuations
which scatters the waves to the nonresonant region.
Then, from either Eq. (36a) or Dawson and Oberman!®
we find that in nondimensional units y,; = W,/kZ and ne-
glecting the spontaneous emission terms the rate equa-
tion for W, becomes

oW,
8t

W,
: <27,,- ﬁ) w,. (37)
2

Similar considerations can be applied to the rate equa-
tion for W, with the following additional consideration.
From Eq. (35) we see that these plasma waves can in-
teract efficiently with the particles in the tail and thus
can be damped either by direct Landau damping or by
resonance broadening in case the tail is flattened quasi-
linearly. An accurate value of the damping rate can
only be found for specific experimental cases, since the
slope of F, depends on the loss rate of the fast particles
from the interaction region (to walls, etc,), For the
present case we simply take the total damping rate as

v,. In this way the rate equation for W, becomes
aw, W,
—67&: e Wy~ v, W,. (38)

While we could neglect the real part of the frequency
shift for the plasma waves, this is not valid for the ion
waves. As can be seen from the linear dispersion rela-
tion, Eqs. (14) or (16), the dominant effect of the hf
fields on the ions is a negative pressure which balances
the particle pressure %2c? and appears in the dispersion
relation as a downshift of the ion acoustic wave by Aw
=kcg, i.e., standing density waves. The pressure of
the waves, W,, will also reduce the particle pressure
and thus reduce the threshold for undamped nonlinear
ion waves.

A nonlinear dispersion relation for the low frequency
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branch in the presence of W¥(k, w) was recently derived
by Weinstock and Bezzerides,? which clearly demon-
strates how the mode-coupling terms reduce the particle
pressure and allow oscillating two-stream waves to
spread to shorter wavelengths. The essential feature of
the nonlinear dispersion relation is that Eq. (14) has an
additional term similar to the second term, which cor-
responds to the waves® W,. In order to determine our
nonlinear marginally stable state we want to find the
value of W, or W, which can keep ion waves with wave-
number #, undamped. This answer can be found from
examining Eq. (14) separately for W, and W,, and it is
well known in the theory of parametric instabilities. If
the dominant term is due to W,, the threshold condition
will be determined by the frequency mismatch for the
high frequency modes with wavenumbers %, and #,. This
is given by®

WY = (ky =k, 2= k2, (39a)
If the dominant term is due to W,, the frequency mis-
match is very small and the threshold will be deter-
mined by the damping v, and will be given by

Wi =4v,. (39b)

We expect that the threshold will be determined by the
smaller of (39a) and (39b). On the basis of (37)-(39)

we can look for an equilibrium state, This will be given
by

2yy= 7o (40)
‘2

‘Z%WIZVG W29 (41)

k3

and the smaller of
W, =Wl or W,=Wj. (42)
(a) If we assume that
kE>4v,,
we find that we can have a marginally stable state with
Wi~4ay,, Wi=2kiy,, W?NZ%}. (43)
(b) ¥ kE<4v,,

N
Wi=ki, Wi=2kv,, We=: ki (44)
e

The physics of the quasi-steady state can be summarized
as follows (Fig. 4). The beam instability is stabilized
gince the waves W, scatter on W, and are transferred
into W, where they Landau damp on the tails. At the
same time the pondermotive force due to W,.(case a) or
due to W, (case b) keeps the nonlinear ion fluctuations

W, at a steady level.

VI. EFFICIENCY OF ENERGY TRANSFER FOR
RELATIVISTIC AND NONRELATIVISTIC BEAMS

On the basis of the results derived in the two previous
sections we can answer the questions we set forth in the
introduction., We first examine the one shot injection
and find the parameter region for efficient energy trans-
fer within scale lengths given by quasi-linear theory. In
order to find some numerical estimates we take the
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FIG. 5. Regions in parameter space where nonlinear stabiliza-

tion (I) and quasi-linear stabilization (I} occurs for a nonrela~
tivistic plasma. Notice the locations of auroral streamers and
type III color bursts.

value of A®~50. Since the dependence of A on the prob-
lem parameters is logarithmie, this value will not
change by more than a factor of order unity for any case
of interest in laboratory or space plasmas. A numerical
check of this value should, however, be carried out a
posteriori. Taking the mass ratio M/m=~2x10%, we
can plot Fig. 5, which summarizes the relevant para-
metric dependence, For plasma parameters in region

I we shall have low efficiency transfer due to nonlinear
stabilization, while in region II the stabilization in the
case of single shot injection will be quasi-linear and the
maximum efficiency transfer will occur on a very short
timescale as given by Eq. (32) for {,,. In Fig. 5 we
have also marked the regions of two space phenomena,
type II solar bursts® and high energy (10~20 keV)
auroral streamers®!? which have been observed to prop-
agate over large distances (10! cm for the case of type
III bursts and several thousands of kilometers for the
precipitating electrons) without any significant energy
loss. We can see (Fig, 5) that the location in param-
eter space of this space phenomena is in region I con-
sistent with the observations. It is easy to check that in
both cases, *% A?<50.

We can extend these results to the case of relativistic
beams if we redefine the parameter « introduced in Sec.
IV on the basis of the relativistically correct growth
rate of the resonant beam plasma instability. As pointed
out by Rudakov,'? one should include the effect of the
angular spread A6 of the beam in the calculation of the
growth rate. The value of the relativistic a will be

given bylz'“
r 2 2 2
o _ oty MC (A0)° +mc¥/ e,
e TaoE+ e tae,/af Y
where Ae, is the energy spread of the beam. It should

also be noted that the spectrum of the beam waves
created by a relativistic beam is given by Ak, /&,
=(mc?/e,)? Ae,/€,+(A0)%, which as a rule is narrower
than the nonrelativistic case, therefore facilitating the
justification of a single wave parametric pump,

The maximum value of a is reached when (a8)?
< (mc?/e,)? A€, /€, and is given by
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a,=2(ﬂ)i(it : (462)

2
n,/ mect \Ag,

The dependence of the growth rate of the energy spread
Ag, vanishes when (A8)% >(mc?/€,)? A€, /€, and if (A6)°
>(mc?/€,), the value of @' is given by

_ofm\mc® 1
“r‘z(n,,) ¢, (aoF

In Fig. 6 we present results similar to those of Fig. 5,
but on the basis of Eq. (46). Graph A corresponds to
Eq. (46a) and graph B to (46b). Region I corresponds to
low efficiency transfer for narrow spread [(A6)? < (mc?/
€,)? A€,/ €,) but maximum efficiency for large angular
spread [(A6)% < (mc%/e,)?]. Region II gives maximum ef-
ficiency in either case. Region III corresponds to maxi-
mum efficiency for narrow spread and low efficiency for
large spread, while region IV always gives low efficiency.
The expected efficiency in a single shot experiment can
be estimated from Egs. (26), (28), and (46). Experi-
ments?®~*2 relevant to our case in which the efficiency
was substantially smaller than the quasi-linearly ex-
pected lie in region I, The only experiment where al-
most quasi-linear efficiency was achieved®” is marked
by a cross and its location is consistent with the theo-
retical prediction, The most recent publication in the
literature® also indicates that the stabilization mech-
anism observed in this experiment is consistent with the
strong turbulence theory notions first presented in Ref,
20 and elaborated on here.

(46Db)

10%- 103
28>mC%e,
102 102
0 10 .
@
- <
En e
3 Pt
N ool ot 2
\ N
N
\_B
2
\\\£9< mC/ep, Aey/ey
1 - ~—— 1
bivg
Yo | OO AN NN IR SR N T DA -
O35 4 5 s 7 8 9 10 10
€,/mC2

FIG. 6. Above the line A or B quasi-linear stabilization corre—
sponding to appropriate parameter range, while below the lines
nonlinear stabilization resulting in low efficiency transfer.
Graph A corresponds to the scale right-hand while B to the
left-hand scale, (Z is the atomic number of the ionic species,)
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VI, RELATIVISTIC BEAM HEATING FOR
THERMONUCLEAR PLASMAS

As an example of a concrete application of the theory
presented previously we examine the feasibility of uti-
lizing relativistic electron beams for tokamak heating,

As discussed by Sweetman,” in a thermonuclear igni-
tion situation there is a gap between about 3 and 20 keV,
over which total heat losses exceed the energy input
due to Ohmic heating and heating due to the trapped
fusion alpha particles. This energy can be supplied by
an intense electron beam of short duration and a power
level of 10**-10® W, which is presently available. The
problem of the injection of the beam into a closed field
configuration has been the topic of intensive experimen-
tal and theoretical research with promising results.®
We do not concern ourselves here with this topic, but
assume that the beam can be successfully injected into
a toroidal device. Since we do not want to disrupt the
equilibrium confinement, we should use a beam whose
parameters lie in the weak coupling regions. On the
basis of available high energy beams we consider, as a
typical case, a beam with ¢,/mc?~ 10, n,/n,=10", and
Af~+%, which is injected in a plasma with 7~1 keV and
1y~ 10", From Fig. 6 we see that such a configuration
lies well in the weak coupling region, The maximum
value of wave energy W ™" estimated from Eqs. (26) and
(46b) is W™*=~7,5x10-%, The time scale for this to oc-
cur is given by Eqgs. (25) and (30) and corresponds to
times of a few nanoseconds. Within a few more nano-
seconds the system will reach a quasi-steady state sit-
uation (Fig. 4) described in Sec, V. The value of k, can
be estimated'®'% to be k,~VW™>/6~0,1 During this
time the beam will lose about 1% of its energy. The
quasi-steady state values and the subsequent evolution
can be found from either Eq. (43) or (44) if we can es-
timate v,. The value of v, depends on the slope of the
the tails Fj, which can be found only by balancing the ef-
effects of quasi-linear diffusion, resonance broadening,
and particle convective loss to walls or out of the sys-
tem. Since we know that §~10-, we can immediately
put an upper limit on v,, namely, v, <103, Since k,
~0.1, it turns out that #2>v, and the equilibrium will be
found from Eqs. (43). In order to find some estimates
of the turbulent levels, we assume that for a toroidal
system we do not have losses of fast particles from the
system, and a steady state distribution of the tails can
be established by balancing quasi-linear diffusion with
emission and absorption of waves due to collisions.

For the tail distribution therefore,

2 9 a 9 T, 8F
= Fp=—Dy— Fp+— —¢ =1 47
ot 1% Degy PV <1)'f+ m 8 ) ’ )

where v is the binary collision frequency, v~ x w!/no®
(» is the Coulomb logarithm), and D, is the diffusion co-
efficient due to W,. It is easy to solve Eq. (45) for the
steady state since it leads to a sharp reduction in ab-
sorption.

~1
2y :(1+Dzl”—> oy (48)

where F, is a Maxwellian of temperature T,. From Eq.

(48) we find that
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1 A
_ 3 AN
v, = Kk3) W T - (49)

Taking k,~0.1, S~ 10, »2%~10°% and, A=20, we find,
for the effective collision frequency,
1

z/ezl()‘uwg . (50)
From Eqgs. (45) and (50) we can determine the turbulence
level for the marginal state (quasi-equilibrium). For
the parameters used in the example we find W{~4x10-%,
Wo~2x10% and W®~5x10"°, These steady state
levels of turbulence are quite low, and we do not expect
the confinement of the plasma to be affected.

Given the turbulence levels we can estimate the slow-
ing down lengths of the beam electrons due to their in-
teraction with the high and low frequency waves, The
relaxation time of the electrons due to the high frequency
waves will be given by #”=¢%/D, ~10" w;', which is of
the same order of magnitude as-binary collisional pro-
cesses, Nonresonant scattering, energy loss for sus-
taining of the tails, and friction amount to smaller con-
tributions.

The predominant effect of the low frequency waves on
the beam electrons is due to return current, This can
be estimated from the relationship (7%/0)t% = n,e,, use of
the fact that o =ne®/my,, where v, is an effective colli-
sion frequency, and noting that en,c =7, Then

15l Lo D1
n, me* v, °

Assuming that vy~ w (W?/nT), we find that

fE:ER_&E._UiQ w;lmlongl .
"y mcT vy
In estimating the relaxation time ¥ we assumed that the
return current was stable either linearly or nonlinearly
due to the enhanced level of WY, For cases where an
ion sound instability arises, the time ¢ might be some-
what shorter.

These estimates seem to indicate that if beam injec-
tion in a toroidal device becomes feasible, relativistic
beam heating becomes a very attractive method for
maintaining thermonuclear temperatures.

VIlI. CONCLUDING REMARKS

We have presented a theory for the stabilization of
the resonant beam plasma instability due to the non-
linearity of the background ions. It has been shown that
when the energy density of the beam-generated wave
spectrum exceeds a threshold, it becomes unstable to
other plasma waves with lower phase velocities and ion
density fluctuations whose dispersion characteristics
are determined by the nonlinear dispersion relation.
Following time honored tradition, 3~° we have called
this process oscillating two-stream instabllity with the
generalized meaning of the instability of a plasma wave
spectrum whose daughter waves have lower phase ve-
locity. In this sense it includes the so called quasi-
decays, modulational, and electrostatic self-focusing
processes resulting in lower phase velocity plasma
waves.
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A numerical solution of the set of equations (1)~(8)
presently in progress will provide a more complete
solution to the problem for situations of interest. The
emphasis here was in isolating and demonstrating the
importance of various physical effects neglected in pre-
vious studies.'"!®!* It was shown that:

(a) if the required level of wave energy density W; re-
quired for nonlinear stabilization at the initial stage is
W, >k, the dominant stabilization is the oscillating
two-stream instability which results in transferring
energy to coupled lower phase velocity plasma waves
and nonlinear ion waves,

(b) The consequences of such a stabilization mecha~
nism instead of stimulated scattering on ambient par-
ticles are important with regard to the observational
features and the eventual steady state of the beam
plasma interaction. More specifically, it allows for
the creation of symmetric electron tails, and for the
propagation of weakly damped nonlinear ion waves even
when T,/T;~1. The presence of a nonthermal level of
ion waves parametrically created by the beam itself
can provide the necessary dissipation to stabilize the
beam waves W, in a steady state, The absorption by
the tails provides the damping for the stabilization of
W,, while the ponderomotive force exerted by the
plasma waves on the ions allows for the existence of
the weakly damped nonlinear ion waves.

There have been several experiments where such
features as electron tails and plasma and ion waves
not satisfying the linear dispersion relations have
been observed.?® In addition, we have provided esti-
mates of the maximum possible energy transfer from
the beam to the plasma for one shot experiments, ex-
amined the propagation of the beam under steady state
conditions, and assessed the possibility of using elec-
tron beams for tokamak heating, More specific esti-
mates will appear in future publications.,

Before closing we should again point out our original
assumptions in deriving Eqs, (1)-(8). Namely, we
neglected:

(i) spontaneous emissions,

(ii) stimulated scattering,
(iii) mode conversion to electromagnetic waves, and
(iv) particle trapping.

In addition, in the results of Sec. VIII we neglected
the decay interactions which will tend to produce some
spectral density of plasma waves in regions with phase
velocities larger than V,,

The role of the above can only be assessed for the
particular situations where the theory is applied.
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