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LOW-DIMENSIONAL CHAOS IN MAGNETOSPHERIC ACTIVITY FROM AE TIME SERIES
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Abstract. The magnetospheric response to the solar wind
input, as represented by the time series measurements of the
AE index, has been examined using phase space reconstruc-
tion technigues. The system was found to behave as a low-
dimensional chaotic system with a fractal dimension of 3.6
and has a Kolmogorov entropy <0.2/min. These are indicative
that the dynamics of the system can be adequately described
by four independent variables and a corresponding intrinsic
ame scale is of the order of 5 min. The relevance of the
results to magnetospheric modelling is discussed.

Introduction

The earth’s magnetosphere is a complex, nonlinear dy-
namical system which responds in a relatively unpredictable
fashion to variations of the solar wind energy input. There
is evidence [Gonzalez et al,, 1989] that the southward com-
ponent of the interplanetary magnetic field (IMF) is a key
penameter that controls the solar wind input. Many indices,
cg. AE, AU, AL, Dgy,K;, ec. are used to characterize
the magnetospheric response to this solar wind input. Each
one measures a different type of response [Mayaud, 1980;
Bammjohann, 1986]. The auroral electrojet (AE) index is
a measure of the horizontal current strength flowing in the
lower jonosphere. It is often taken as the substorm index.
Many empirical and physical models attempt to study the
response of AE to the IMF variations [Clauer et al., 1983;
Bargatze et &l., 1985; Kamide and Slavin, 1986] using lin-
ear prediction filter techniques. Most recently, Tsurutani et
8. [1990] examined the Fourier transform of the AE time
serics and correlated it to the IMF spectrum. The results of
these studies indicate: i) the absence of periodic or quasiperi-
odic behavior. Rather, the power is always concentrated in
the lowest frequency suggesting an aperiodic behavior (either
dewrministic-chaotic or random); ii) a 1/f power spectrum,
similar to the IMF spectrum, at low frequencics (f<6.10~°Hz)
with 2 break near 6.105 Hz followed by a 1/f22-24 gpec-
wam. Namely, the magnetosphere is a low-pass filier and
is internal dynamics controls the high frequency behavior.
Froes the microphysics point of view the “internal dynamics”
is composed of a complex of inkractions which involve phe-
nomenn such as modifications in the ionospheric conductiv-
ity, cross-tail current disruption or tearing mode instabilities,

3 currents, anomalous resistivity or double layers,
tic. Although progress in understanding these phenomena has
been made, we are still far from producing quantitative pre-
dictive models of the interaction {Butler and Papadopoulos,
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1984]. The techniques described above revealed the presence
of multiple time scales but could not assess the dynamics re-
sponsible for the observed output. It is the purpose of this
letter to propose a different type of analysis and modelling of
the data that describe the magnetospheric response based on
recent developments in the study of phase spaces of nonlincar
systems [Mayer-Kress, 1986].

Uniil recently nonlinear systems with spesiodic behav-
ior, such as the magnetosphere, were described in terms of
power spectra or correlation functions. However, while spec-
tral studies are suitable for the study and classification of
periodic, quasiperiodic or random systems, they are unable
to provide meaningful information for a wide class of sys-
tems known today as “chaotic” systems. In such systems the
broadband spectra and “random™ behavior apparent in snap-
shots or time series, are the consequences of aperiodic deter-
ministic motion with extreme sensitivity to initial conditions
rather than stochastic behavior. In the past few years tech-
niques have been developed which allow us o derive quanti-
ties associated with the phase-space evolution of the system
and its associated geometry. These quantities are known as
dimensions, entropies, Lyapounov exponents and singnlarity
spectra [Farmer et al., 1983; Mayer-Kress, 1986]. A virtue of
these guantities is that they provide simple, global and topo-
logically invariant information. The dimension, for example,
with which we deal mainly in this paper, is a single-number
information on the system. It represents the minimumn menber
of independent variables that can describe the system. For-
thermore, from the point of view of analyzing experimental
dats, these quantities have the virtue that they can be cal-
culated casily from time series even from a single dynamic
variable. In this paper we present an analysis of time se-
ries of the AE index vsing nonlinear dynamical techniques.
The analysis demonstrates that magnetospheric bebavior as
represented by the AE index is a low-dimensional attractor
and thus amenable to further dynamical analysis. In view
of the novelty of such techniques in the space physics com-
munity we present in the next section a somewhat extended
description of the time-serics analysis technique.

Nonlinear Time-Series Analysis

A dissipative systern, such as the magncwsphere, hag
the property that its phase space volume contracts as the
system approaches its asympeotic state, This dynamical stase
is called the aftractor and may generslly be described by
fewer veriables than the original systom (bere the independent
variables correspond to the degrees of freadom of the system).
If we consider the attractor as a set of points embedded in
the phase space then by a weli-defined proceduse we cam
assign to it a number called its dimension. The dimemsion
tums cait to be 2 lower bound in the oumber of independent
variables nocessary 10 describe or model the amractor. o

1841



1842

this positive-definite dimension is fractional (in which case
the attractor is a so-called fractal set) then the bound is the
next highest integer. Also a fractional dimension is indicative
of chaotic dynamics governing the motion on the attractor
(quasi- or periodic motion is revealed by integer dimension).
The presence and degree of chaas in the system can then be
quantified by different diagnostics, such as the Kolmogorov
entropy.

The dimension and entropy are found from the system’s
evolution in phase space. Experimentally we often have ac-
cess to time series of only one or few variables, but this
obstacle can be overcome if the system variables are suf-
ficiently coupled. In such cases the time delay embedding
technique [Takens, 1981] is an appropriate method for using
the time series data to reconstruct the phase space and obtain
its characteristic quantities.

Following this method we construct an m-component
“state” vector X; from a time series x(t) as

Xi= {x1 (t;) %2 (t.), ...Xm (ti)}

where xy (t;)=x(t; + (k — 1) 7) and 7 is an appropriate time
delay (of the order of characteristic physical time scales). In
this reconstructed phase space the distribution of state vectors
is directly related to the sought dimension. By defining a suit-
able quantity that depends on the distribution and examining
its scaling with distance in phase space, one can extract the
value of the dimension. Here we use the correlation integral
[Grassberger and Procaccia 1983a] defined for N vectors dis-
tributed in an m-dimensional space as a function of distance r:

N .

C(r;m) = Nlir%oﬁ;%e(r— | X;—X; 1)
where O is the Heavyside step function. If the number
of points is large enough, as assumed above, this distri-
bution will obey a power-law scaling with r for small r:
C(r;m) ~ r¥, where v is the correlation dimension, defined
as

v = lim log C(r;m)
-0 logr
As we increase our control parameter m, the correlation
dimension is seen to converge to its ttue value. Generally
v<m with the equality holding when there is no attractor and
the system explores the available state space, as in the case
of random or “noisy” systems with many degrees of freedom.
From the correlation integrals it is straightforward to de-
termine the K7 entropy [Grassberger and Procaccia, 1983b):
.1 C(r;m)
Ky = %‘—i% rlnC(r;m +1)
where 7 is the sampling rate. This entropy is a lower
bound of the Kolmogorov entropy which measures the rate
of loss of information, or difference of evolution between
almost identical initial conditions, When Kgq is finite, the
Kolmogorov entropy is nonzero, and the system is chaotic; if
K3 is infinite the system is random (nondeterministic). The
inverse of this entropy is a timescale over which we can
accurately predict the behavior of the system.

AE index and Magnetospheric activity
As mentioned in the introduction the AE index is 2 con-
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venient characterization of the magnetospheric activity ofiey
interpreted as a measure of substorm activity [Bawmj
1986]. In this paper, time series of AE data [Allen, 1987}
were usedtosmdytbenonlineardynamicalpmpaﬁcsdq.
netospheric activity using the above methods. These dam s
flect the activity observed during the first 21 days of

1983 averaged over 1 minute intervals, a total of 30 Jomim,
We chose the sampling time small enough to be able w
solve the time scales of substorms and related m
phenomena. The time series is shown in Figure 1 and con.
tains several distinct periods of various activity levels. Thige
data were examined in segments of 5 kmin long 10 comm
homogeneous activity, except for the most active scgeem
at 21-27 kmin, which was examined as a whole. A kvd
of activity was assigned to each segment using the integnd
occurence percentage [Bargatze et al., 1985]. Concatesswd
pairs of successive segments were compared to determine the
variation of results with the segment length N,
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Fig. 1. The time series of the AE index for 1- 21 Janwery
1983, with 1 min. resolution.

Each data set was embedded in a reconstructed state space
using the method of time delays [Takens, 1981}, Afeer ob
serving that results varied little with the time delay (in te
range of 5 to 30 minutes) 7 was fixed to 10 min. In the &
dimensional state space the correlation integral [Grassberger
and Procaccia, 1983a] is formed and ploted ageinst v ia »
log-log diagram. The correlation dimension can then be ca
culated in different ways as the slope of the log(C)-ogll
curve. Our favorite was a least squares fit, althongh other
methods of linear regression gave very similar resuhs. PFor
a chaotic system as m is raised v grows and then sanmwases
Indeed v always converged rapidly for the AE dats © » mem-
ber between 3 and 4 (see Figure 2). Figure 3 gives s plotof
attractor dimension versus activity, each point corresponding
1o a different data segment. All points are contained betwers
3 and 4, independentty of activity, with an average dimoasioe
3.6. Longer data sets (the most active set, 21-27 kuin, snd
the concatenated sets) also fall in the same range. Howawe,
for a few segments the activity was particularly nommifonm,
¢.g. the interval 15-20 kmin (Figure 1). As a resulf te o
served attractor is deformed and not populated with enowgh
points. Unless the number of points is increased corralbutions
are poor and there is no convergence w0 a low dissemnit®
value as the data look random to the comrelation slgoriles.



Vassiliadis et al.: Chaos in Magnetospheric Activity

" 25, R LA A R A B

N Y VI T |

Cerraiation Diroawsiea ¥
[
YT

7T

PN AT SRR R

PR T B R { PR T N
? 2 1 € ]
Embedding Dimension =

-
o

Fig. 2. The attractor dimension v is seen to saturate (here to
1.6) s the dimension m of the embedding space is increased.
The data come from the 0-5 kmin segment of the dawa in Fig.
1. The straight line corresponds to the dimension exhibited
by a random of ROisy System.
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Fg 3. The attractor dimension v converges between 3 and
4 far oll data segments and is plotted here versus an estimate
of their activity level.

Another way to correct this is 1o shift the time interval untl
the actvity is again sufficiently uniform.

The seasitivity of the correlation-dimension method to
exiernal noise was also tested. Such noise could be the
oatput of a random process or poor measurement conditions.
White moisc was added to the original measurements and
the dependence of the dimension on its level was measured.
This is shown for two different sets of data (0—5 kmin and
21-27 kmin) in Figure 4; here the noise level has been
mormalired to the activity of each sample (83 nT and 292
aT, respectively). Initially until 3-4% of the activity level the
dimension estimate stays almost constant, but then it increases
® least lincarly with noise. For a finite data set the rate of
increase also depends on its length. The invariance of the
dimension 10 small levels of noise is indicative of the accuracy
of the method; similarly the sensitivity of the result to higher
Boise levels proves the quality of (low-noise) data,

The entropy K1 as defined above was also computed for
e scgment 0-10 kmin (Figure 5). The lines are parametrized
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Fig. 4. Effect of noise of the dimension estimates for
two segments with guite different activity levels (squares:
0-Skmin, circles: 21-27kmin). For each case the noise level
is normalized to the activity level of the segment, 83 nT and
292 nT.

by r-valves, which grow from top to bottom. For too low 1's
the statistics do not allow for good convergence; therefore
only r-velues above a chosen threshold are shown. The
value found for the entropy, 02/min, has two important
implications. A finite entropy suggests that the time series
data does not represent a random system, but rather a chaotic
one. Secondly the time scale characteristic of the syseem is
~5 mins.
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Fig. 5. Convergence of the entropy Kz with the embedding
dimension m from the first 10 kmin of the time series. The
convergence valve, 0.2 min~!, is an cstimase of the Kol-
mogorov entropy of the signal,

Summary and Discussion

Using the nonlincar methods outlined above, the state
space of the megnetospheric response as described by the AE
index was reoonstructed from the time series data. In the
reconstructed state space, the system is seen w0 cvolve on
& fractal set with dimension 3.6. This result seggests two
things: first, the dynamics of the system is ncither quasiperi-
odic nor random, but chactic. The absence of quasiperiodic
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or strong random components is verified by tests using this
method as well as by other diagnostics (e.g., the continuum
nature of the power spectrum; the finite value, 0.2/min, of the
K3 entropy). Secondly, the low dimension indicates that the
system can be described by four independent variables. By
“system” we do not mean the global magnetosphere but only
its response as represented by the AE index. Both findings
encowrage recent attempts [Baker et al., 1990] at constructing
simple, deterministic models of the loading-unloading process
in the magnetosphere that yield chaotic behavior for a broad
range of parameters.

It is important, before closing, to address the relevance
question. Are analyses such as the one presented here simple
intellectual curiosities or can they lead to advances in under-
standing and modeling of the magnetosphere? At present the
only honest answer is “we do not know but it is worth explor-
ing”. The fact that a low-dimensional system was identified in
the study encourages us to proceed further. If a higher dimen-
sion had been found (say, »>10) the system would be best ad-
dressed by conventional statistical techniques. The next step
in the analysis is to identify the appropriate variables and to
infer possible forms for the system’s evolution equation. This
requires a combination of physical understanding along with
nonlinear analysis. For the case considered here, we note
that the AE index is a measure of overall geomagnetic activ-
ity in the auroral region and is derived from measurements
of the north-south components of magnetic field fluctuations
at a number of ground stations. These fluctuations are due
to the electrojet current whose strength is proportional to the
precipitation process and the strength of the parallel electric
field. Further these currents lead to heating of the ionospheric
plasma, thus affecting the magnetic and electric fields. From
these considerations, a choice of the physical variables could
be the north-south and vertical magnetic ficlds, the parallel
electric field and the plasma temperature. We do not expect
the solar wind to belong to this set of variables because it pos-
sesses features of a random process associated with a large
number of degrees of freedom (indeed the corresponding di-
mension v does not seem to converge to a small value). With
this or another choice of variables, the techniques for the
construction of equations of motion [Crutchfield and McNa-
mara, 1987] may be used to construct a model whose phase
space can then be compared to the one reconstructed from
the AE data. This work is in progress and results from such
an attempt will be presented in a future paper.
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