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[1] The magnetospheric dynamics consists of global and multiscale components. The
local-linear filters (LLFs) relating the solar wind input and the magnetospheric output have
been used earlier to predict the global dynamical behavior. In this paper, the relative role of
global and multiscale processes in the prediction of magnetospheric dynamics is studied.
The filters are derived from the reconstructed input—output magnetospheric phase space
using time series of VBg as the input and AL index as the output. We show that the
conventional formula for the LLF can be broken into two parts corresponding to the global
and multiscale constituents. The first part is the zeroth-order term, which is obtained by the
phase space average of the model outputs. This is a feature similar to the mean-field model

in phase transition physics, which yields iterative predictions of the global coherent
component. The second part consists of the higher-order terms of the filter, which are
highly irregular and thus cannot be used in dynamical prediction. This irregular behavior
represents the departure from the low-dimensional dynamics underlying earlier studies
using LLFs. The earlier prediction studies mixed these two components. However, by
separating these two components, the prediction procedure is highly simplified and longer
period predictions are achieved. The multiscale nature arises from the perturbations over a
wide range of scales and has a power spectrum similar to that of colored noise. When
these perturbations are taken into account in the prediction process, the iterative
predictions yield a factor of four improvement in the accuracy compared to the mean-field
model. However, the filter technique does not provide a prescription for correctly
including the multiscale aspects in a dynamical model and further improvement in
forecasting can be achieved by a statistical approach. These results have important

implications for space weather forecasting.
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1. Introduction

[2] The solar wind energy penetrates into the magneto-
sphere by magnetic field line reconnection at the dayside
magnetopause, giving rise to magnetospheric substorms.
Due to the imbalance between the reconnection rate on
the dayside magnetopause and at the distant neutral line a
fraction of the solar wind energy is accumulated in the
magnetotail, mainly in the form of magnetic energy, and is
then suddenly released. Substorms have a variety of distinct
manifestations in the ionosphere (magnetic field perturba-
tions at the polar regions, auroral brightening, particle
precipitation) as well as in the mid and distant magnetotail
(plasmoid formation and ejection). Magnetospheric activity
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during substorms extends from small-scale processes, such
as pseudobreakups, MHD turbulence, and current disrup-
tion, to large-scale processes, such as global convection,
field line depolarization, and plasmoid ejection. Thus, the
magnetosphere behaves as a nonlinear, open, spatially
extended system, which on the one hand is well organized
on global scale and on the other hand exhibits activity over
a wide range of spatial and temporal scales.

[3] There has been a considerable progress in the model-
ing and understanding the solar wind—magnetosphere cou-
pling using nonlinear dynamical techniques. In this approach
the system evolution is described directly from data, using
special techniques such as time delay embedding, singular
spectrum analyses, linear and local-linear filters (LLFs)
[Sharma et al., 1993; Sharma, 1995; Vassiliadis et al.,
1995]. The clear advantage of data-derived models is their
ability to reveal inherent features of dynamics even in the
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presence of complexity and strong nonlinearity. The earlier
dynamical models of the magnetospheric activity were
motivated by the global coherence indicated by the geo-
magnetic indices and inspired by the concept of dynamical
chaos. They were based on the assumption that the observed
complexity of the system is mainly attributed to the non-
linear dynamics of a few dominant degrees of freedom
[Sharma, 1995; Klimas et al., 1996]. Studies of the magneto-
sphere as a dynamical system using modern techniques of
data processing and phase space reconstruction [Grass-
berger and Procaccia, 1983; Abarbanel et al., 1993] based
on AE index time series gave evidences of low effective
dimension of the magnetosphere [Vassiliadis et al., 1990;
Sharma et al., 1993]. Further elaboration of this hypothesis
resulted in creating space weather forecasting tools based on
LLF with autoregression [Price et al., 1994; Vassiliadis et
al., 1995; Sharma, 1995] and data-derived analogues [KIi-
mas et al., 1992]. The low-dimensional organized behavior
of the magnetosphere during substorms is also evident in
many spacecraft in situ observations including the INTER-
BALL and GEOTAIL missions [leda et al., 1998; Nagai et
al., 1998; Petrukovich et al., 1998]. These studies confirm
such key features of the globally coherent dynamics as
plasmoid ejection, field line dipolarization, generation of
hot earthward plasma flows, etc.

[4] However subsequent studies have shown that not all
aspects of magnetospheric dynamics during substorms con-
form to the hypothesis of low dimensionality and thus
cannot be accounted within the framework of dynamical
chaos and self-organization. For example, the power spec-
trum of AE index data [ Tsurutani et al., 1990] and magnetic
field fluctuations in the tail current sheet [Ohtani et al.,
1995] have a power law form typical for high-dimensional
colored noise. Prichard and Price [1992] have argued that
using a modified correlation integral [Theiler, 1991] a low
correlation dimension cannot be found for the magneto-
spheric dynamics. Moreover, detailed analyses [Zakalo et
al., 1993, 1994] have shown that the qualitative properties
of the AE time series are much more similar to bicolored
noise than to the time series generated by low-dimensional
chaotic systems. One interpretation of these multiscale
aspects of magnetospheric dynamics was suggested to be
a multifractal behavior generated by intermittent turbulence
[Consolini et al., 1996; Borovsky et al., 1997; Chang, 1998;
Angelopoulos et al., 1999]. Another popular approach to
magnetosphere modeling is based on the concept of self-
organized criticality (SOC) [Bak et al., 1987]. SOC explic-
itly takes into account the large number of degrees of
freedom and the interactions among them on different
scales. According to SOC models [Consolini, 1997; Chap-
man et al., 1998; Uritsky and Pudovkin, 1998; Chang,
1999; Takalo et al., 1999; Watkins et al., 1999; Klimas et
al., 2000] multiscale behavior arises spontancously and
requires no tuning of the system parameters, in other words
SOC is attractor of dynamics.

[s] Although SOC can account for the characteristic
power spectra observed in a number of processes during
substorms it is doubtful that SOC alone can provide the
framework for modeling the solar wind—magnetosphere
coupling. Indeed, it turns out that SOC, which was devel-
oped to model sand pile behavior, is oversimplified even for
modeling real sand piles [Nagel, 1992]. Violations of SOC
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behavior were detected in observations of particle injections
in the near-Earth magnetosphere [Borovsky et al., 1993;
Prichard et al., 1996] and substorm chorus events [Smith
et al., 1996]. Besides, the magnetosphere is essentially
nonautonomous with dynamics governed to a large extent
by the external driver, the solar wind, while in SOC the
criticality is reached by a fine tuning of the control parameter
(i.e., driving rate) to the vanishing value [Vespignani and
Zapperi, 1998]. Some models that internally exhibit SOC
can simultaneously generate non-SOC global instabilities
[Chapman et al., 1998]. However, since such system-wide
avalanches were found only in the simplified sand pile
models, this still cannot account for the specific coherent
features of the actual magnetospheric dynamics. Moreover,
since the fluctuations of the system at a critical point are
completely uncorrelated it removes the possibility of even
short-term predictability of the system’s evolution while it
was clearly demonstrated [Sharma, 1995; Vassiliadis et al.,
1995; Valdivia et al., 1996] that input—output models yield
good predictions of global magnetospheric activity.

[6] One of the ways to reconcile global and multiscale
aspects of dynamics in unified model is suggested by the
physics of phase transitions. There are two different types of
phase transitions, which are intimately related to each other
and naturally coexist in a single system. The first-order phase
transitions are characterized by a low-dimensional manifold
in the phase space, e.g., the temperature—pressure—density
surface for water-steam transitions. In first-order phase
transitions the first derivative of the state parameter of the
system like density in water-steam transition or magnet-
ization in ferromagnets is discontinuous. The distinctive
feature of second-order phase transitions, which represent
the behavior of the system at criticality (i.e., in the vicinity of
the singular point of the phase transition surface), is their
scale invariance reflected by various power law spectra and
critical exponents [Stanley, 1971]. Phase transitions in real
nonautonomous systems are essentially dynamic and are
nonequilibrium which results in additional properties like
hysteresis and dynamical critical exponents [Hohenberg and
Halperin, 1977; Chakrabarti and Acharyya, 1999; Zheng et
al., 1999]. It has been noted [Sitnov et al., 2000, 2001;
Sharma et al., 2001] that the magnetospheric dynamics
during substorms shares a number of properties with non-
equilibrium phase transitions. In particular, it was shown that
multiscale substorm activity resembles second-order phase
transitions, while the large-scale perturbations reveal the
features of first-order nonequilibrium transitions including
hysteresis and global structure similar to the “temperature—
pressure—density”’ diagram. Although the phase transition
analogy gives an insight into various properties of the
magnetospheric dynamics its implications to the forecasting
of magnetospheric evolution are not clear yet.

[7] The main purpose of the paper is to study the role of
multiscale processes in the prediction of magnetospheric
dynamics. The multiscale processes have been ignored in
the earlier studies and this has limited the quality of the
predictions. The LLFs relating the solar wind input and the
magnetospheric output are used to analyze the relative roles
of global and multiscale constituents of the magnetospheric
behavior during substorms.

[8] It is found that in spite of the low dimensionality
assumption that lies underneath the LLF model, filters are
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still capable of mimicking the multiscale high-dimensional
component of magnetospheric dynamics. We show that the
conventional formula for LLF can be broken into two parts,
which are responsible for different dynamical constituents.
The first part, the zeroth-order term of LLF, is the phase
space average of the model outputs, which is similar to the
mean-field model in phase transitions. It yields iterative
predictions of AL dynamics naturally separating the global
coherent component from the time series. We also show
that the second part, which consists of the higher-order
terms of the filter, is irregular and thus is irrelevant for
predictions. This irregular behavior indicates the fundamen-
tal difference between low-dimensional scale-invariant
dynamic systems like Lorenz attractor and the magneto-
sphere, which does not possess low dimensionality on
smaller scales. Nevertheless, the higher-order terms in the
filter formula still can model multiscale constituents of the
magnetospheric dynamics, whose properties, both statistical
and dynamical are very similar to those of systems at
criticality.

[9] The next section describes the LLFs and how they
represent the global and multiscale features of the solar
wind—magnetosphere system. In section 4 the predictions
of the global magnetospheric dynamics using the center
of mass component of LLF is discussed. The multiscale
aspects modeled in section 5 by data reconstruction, and
this yields an estimate of the complexity in terms of the
dimensionality of the space needed to represent the
system. The last section presents the main results of
the paper and their implications to space weather fore-
casting.

2. Time Delay Embedding, Center of Mass, and
LLFs

[10] In this section we discuss the primary aspects of
constructing a dynamical model of nonautonomous (input—
output) system based on LLFs with autoregression [Abar-
banel et al., 1993; Sauer, 1993; Vassiliadis et al., 1995]. In
this model a scalar time series I(t) is used as the input which
yields the output of the model O(t).

[11] It is assumed that the scalar time series data of
observable quantities is a function only of the state of the
underlying system and contains all the information neces-
sary to determine its evolution. Thus, if a space large
enough to unfold the dynamical attractor is reconstructed
from the time series and the present state of the system is
identified, then the information about the future can be
inferred form the known evolution of similar states.

[12] For nonlinear dynamical models the phase space of
the system is reconstructed first using the time delay
embedding method [Packard et al., 1980; Takens, 1981;
Broomhead and King, 1986; Sauer et al., 1991]. The
embedding theorem [Tukens, 1981] states that in the
absence of noise, if M > 2N + 1, then M-dimensional
delay vectors generically form an embedding of the under-
lying phase space of the N-dimensional dynamical system.
Although Takens theorem is strictly valid for autonomous
systems only, numerous studies [e.g., Casdagli, 1992;
Sharma, 1995; Vassiliadis et al., 1995; Sitnov et al.,
2000] have used successfully the delay embedding method
for modeling nonautonomous dynamical systems. In this
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case the M-dimensional embedding space is formed by
input—output delay vectors:

- A\ T
in = <1n70n>

T
= (I Toto- o Lo M-1),On, Ont, .., On_vicr)) (1)

where I, = I(ty + n - 1), O, = O(ty + n - T), 7 is the delay
time, M; + M, = M. If the delay matrix A is defined as:

Xy
A=| (2)
XN
N
C=ATA= Zik ® Xy; Cvi = wf(Vk,Vk S RM,k =1,,M

k=0

3)

then C is the covariance matrix. Since C is hermitian by
definition, its eigenvectors {Vy} form an orthonormal basis
in the embedding space. {Vi } are usually calculated by using
the singular value decomposition (SVD) method, according
to which any M x N matrix A can be decomposed as:

M
A:U-W~VT=ZWk'ﬁk®Vk 4)
k=1

where

V= (Vh...,VM),U - (l_l‘l,.A.,lqlM),
W = diag(wy,...,wm); U-UT=1,V.-V' =1

On the other hand when the effective dimension of the
system is not known, it is not clear beforehand what number
M of delays will provide embedding of the underling phase
space. Broomhead and King [1986] noted using the Lorenz
system that the singular spectrum {wy} of the delay matrix
decreases until it reaches a plateau due to the noise in the
system. They suggested that M should be the point were the
signal turns into noise. However, it turns out that real open
systems do not always behave this way. In particular, using
VBgs—AL time series Sitnov et al. [2000] have shown that in
the case of magnetosphere the singular spectrum has well
defined power spectral shape that is retained over a wide
range of scales with no clear sign of a distinctive noise floor.
Hence, it is not always possible to find the appropriate value
of M using SVD only. In this work we demonstrate that
LLFs themselves can be used for determining the embedding
space dimension when applied in an inverse problem
manner. That is, if M is considered as a free parameter of
the model, then the prediction error can be minimized with
respect to this parameter, and the M value which provides the
minimum error gives the embedding space dimension.

[13] If the embedding procedure was properly performed,
that is, if the attractor of the system was completely
unfolded, then the projection of delay vectors on the basis
constructed with SVD yields the reconstructed states of the
system. These reconstructed states have one-to-one corre-
spondence with the states in the original phase space and
thus can be used for predictions of the future evolution of
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the system [Farmer and Sidorowich, 1987; Casdagli, 1989,
1992; Sauer, 1993]. For this purpose it is assumed that the
underlymg dynamics can be described as a nonlinear scalar
map Oy = F(In, 4) ), which relates the current state to
the manifestation of the following state, the output time
series value at the next time step. The unknown nonlinear
function F is approximated locally for each step of the map
by the linear filter:

Oni1 ~ Fo + (617., 66,,)T~ ( %‘)

= F(fg76§> +1‘iﬁ201 Oci(lnﬂ 1§ ) +N:OZOI B; (0 -i— Oﬁj) (5)

where (fnc, 6:)T is the point about which the expansion is
made. The parameters of the filter (oy, (3;, and Fy) are
calculated using the known data, which is referred to as the
training set. The training set is searched for the states similar
to the current, that is the states that are closest to it, as
measured by the distance in the embedding space defined
using the Euclidean metric. These states are referred to as
nearest neighbors. LLFs in the form of (5) are also known as
local-linear ARMA filters [Detman and Vassiliadis, 1997],
since the linear term on the right hand side of (5) is
composed of a moving average (MA) part, i.e., the weighted
average of preceding inputs, and an autoregressive (AR)
part, i.e., the sum of previous outputs.

[14] The zeroth-order term in (5) is a function of the center
of expansion, the choice of which is, strictly speaking,
ambiguous and should be justified in each particular case.
For AE and Dst time series forecasting Price et al. [1994]
and Valdivia et al. [1996] have used the expansion about the
origin. Another p0551b1e center of expansion can be the
reference point, (In7 §) ) For chaotic time series forecast-
ing in autonomous dynamical systems Sauer [1993] sug-
gested that better predictability is achieved when the average
state vector of NN nearest neighbors is taken as the center of
expansion:

<<fn76n>T>NN:% ?: (ﬁ,ﬁﬁ)T (6)

which is also called the center of mass, since (6) is the
formula for the ¢ cener of mass of NN identical particles with
coordinates (I,,0,). In this case, if the whole expression
5)is averaged over NN nearest neighbors, the leading term
in the expansion Fy becomes (Oy1)nns 1.€., the arithmetic
average of the outputs corresponding to one step iterated
nearest neighbors. The resulting expression for the LLFs
takes the form:

Mi—1

On-%—l - <On+1>NN+ Z Qj (In—i -
i=0

() )
#3800 (o)) g

Vassiliadis et al. [1995] used local-linear ARMA filters with
expansion around the center of mass for both the short and
long-term predictions of auroral indices, which gave better
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results than the model of Price et al. [1994]. It may seem
that choosing the center of mass as the expansion center for
the filter function is an auxiliary procedure that leads to
some increase in the prediction accuracy. However, as we
will show later in the paper, in the case of Earth’s
magnetosphere, and presumably for a large class of
nonautonomous real systems, expansion about the center
of mass may be the essential element of modeling the
system’s dynamics with the use of LLFs. It allows a
separation of the regular component of the dynamics,
stabilizes the prediction algorithm, and provides the basis
for modeling the multiscale portion of the dynamics.
Moreover, we demonstrate that, as was earlier noted by
Kennel and Isabell [1992] for the case of autonomous
systems, if the filter function is expanded about the center of
mass, the linear terms in equation (7) are irrelevant and can
be omitted, as far as long-term predictions are concerned;
the best prediction results can be achieved using only the
zero-order terms.

[15] When the center of mass is calculated, equation (7) is
applied to each of the nearest neighbors. This results in NN
linear equations with M unknowns, viz. filter coefficients
i, 3j and can be expressed as:

Ay = b (8)

(ﬂ:N,éwN)T—<(fn,6n)T>

This system of equation is solved in the least squares sense
with use of SVD:

NN

M,

- 1 1 - Ny

¥=Awb= Z WN (b “EN)VEN )
k=1 k

where M’ < M is the number of singular values that lie
above the prescribed noise floor (tolerance level). Finally,
after the filter coefficients are found they are plugged into
(7) and then Oy4q is calculated. Combining O,+; with
measured I,.; and repeating the above steps of the
algorithm the next value Oyi, can be evaluated. Thus,
local-linear ARMA filters can be used to run the iterative
predictions of the system’s dynamics.

3. Description of the Data

[16] The LLFs were derived using the correlated database
of solar wind and geomagnetic time series compiled by
Bargatze et al. [1985]. The data are solar wind parameters
acquired by IMP 8 spacecraft and simultaneous measure-
ments of auroral indices with resolution of T = 2.5 min. The
database consists of 34 isolated intervals, which contain
42216 points total. Each interval represents isolated auroral
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activity preceded and followed by at least 2-hour-long quite
periods (VBg ~ 0, AL <50 nT). Data intervals are arranged
in the order of increasing geomagnetic activity. The solar
wind convective electric field VBg is taken as the input of
the model. The magnetospheric response to the solar wind
activity is represented by the AL index, which is the output
of the model. In order to use both VBg and AL data in joint
input—output phase space their time series are normalized to
their standard deviations. The prediction accuracy is quan-
tified by normalized mean squared error (NMSE) [Gershen-
feld and Weigend, 1993]:

1 1g 2
n_%JﬁZ(ok— Oy) (10)

k=1

Here k = 1 to N span the forecasting interval, og is the
standard deviation of the original output time series, and "
symbol denotes the predicted values. The value n = 1
corresponds to a prediction of the average.

4. Long-Term Predictions: Global
Magnetospheric Dynamics

[17] The modeling of the solar wind—magnetosphere
coupling with the use of local-linear ARMA filters yields
many new results on the nature of the dynamics of the
system. In this section we compare these results with earlier
results [Vassiliadis et al., 1995] to isolate the features of
LLFs that are important to the long-term forecasting of
magnetospheric activity and to look for ways to reconcile
the overall predictability with the multiscale aspects of
dynamics. For the forecasting of auroral indices Vassiliadis
et al. [1995] have used ARMA filters with center of mass in
the form of (7), taking VBg as the model input. Applying
them to various intervals of the Bargatze database they have
shown that the filter response is stable, thus allowing long-
term forecasting. The prediction error of their model is
minimized at a low number of filter coefficients (M = 3-6)
that was interpreted as a supporting argument for the low
effective dimensionality of the magnetosphere.

[18] Local-linear ARMA filters in the form of (7) are the
starting points of the current work as well. The output of the
model, AL index, was predicted on the basis on its driver,
VBeg. Filters were calculated for both high and low magne-
tospheric activity periods. In particular, we present calcu-
lations for the 31st and the 14th Bargatze intervals.

[19] To define the optimal filter structure for long-term
forecasting, the following sequence of steps was performed.
First, the testing intervals corresponding to different levels
of magnetospheric activity were selected from the database.
As for the training set, both input and output data were
available for the testing sets. Then, the AL index was
predicted for each of the testing intervals using various
values of filter parameters, and compared to real data, by
calculating the forecasting error (NMSE), for the entire
interval. The filter parameters that result in minimal value
of NMSE were chosen as optimal. There are three param-
eters in the ARMA model that can be tuned to minimize
NMSE. (1) The number of delays M; and M,. For simplicity
all calculations were performed for M; = M, = M. Con-
ceivably, 2M also gives a linear hint as to the number of
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active degrees of freedom. (2) The number of nearest
neighbors (NN), which is used in the calculation of filter
coefficients. If NN is comparable to the total number of
points in the training set, then the LLF simply becomes a
linear filter. (3) The tolerance level, the signal-to-noise ratio,
which controls the number of terms in the local singular
value spectrum that should be included in the summation in
).

[20] After considering a wide range of these parameters
and calculating filters for different activity intervals we
discovered that for long-term predictions formula (7) can
be further simplified. For the cases studied here the pre-
diction error minimizes when only zeroth-order terms are
taken into account:

On+l = <On+1>NN (11)
That is, when the value of the output at the next time step is
calculated as the arithmetic average of the outputs
corresponding to the iterated nearest neighbors of the
current state of the system. The forecasting algorithm in this
form is very stable and allows iterative predictions of AL
time series for several days in a row without any adjustment
the filter parameters or reloading the procedure.

[21] Such filters have only two free parameters, NN and
M, which should be adjusted to minimize the prediction
error. The forecasting of the 31st and the 14th Bargatze
intervals, using the filters with the optimized parameters, is
presented in Figures 1 and 2. The difference between the
real AL data and the model outcome is shown by gray
shading. Iterative predictions of the high activity 31st
interval were carried out for 2500 min, during which NMSE
did not exceed 57%. This result is almost identical to those
of Vassiliadis et al. [1995, Figure 10] model. However, by
using a simplified and therefore more time-efficient algo-
rithm we are able to achieve the same level of accuracy
without reloading the procedure after the first 20.8 hours.
The forecast of the low-activity interval is also very stable
and follows the trend of real data with NMSE equal to 61%.

[22] As can be seen from the plots, the model output
closely reproduces the large-scale variations of AL, some-
times failing to capture the most abrupt changes and the
sharp peaks. This is intuitively understandable, since
the calculation of model outcome reduces to averaging the
outputs corresponding to iterated nearest neighbors, the filter
output comes inherently smoothed, which results in the
observed discrepancy. The higher the number NN of nearest
neighbors, the stronger the smoothing and less abrupt the
variations of the data can be reproduced by the model. If NN
is kept small, then the filter is capable of mimicking rather
sharp peaks. However, since the nearest neighbors are
identified as the states that have the smallest distance from
the current state in the embedding space, an increase in M in
this case may result in choosing false nearest neighbors,
which leads to prediction error growth. The dependence of
prediction error on filter parameters is illustrated by Figure 3,
which contains the plots of NMSE as function of NN and M
calculated for the 31st and the 14th Bargatze intervals. In
both cases NMSE surfaces have similar structures. There is a
significant drop in NMSE from 1.0 to 0.6—0.7 when M is
increased from 1 (no autoregression) to 3. With further
growth of M, NMSE continues to decrease till it reaches
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Figure 1. Long-term predictions of AL time series in the 31st Bargatze interval. The model input, VBg
time series, is shown on the upper panel. The bottom panel shows the LLF output together with the
observed AL data. The difference between the observed and the predicted time series is shown with gray
shading.
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Figure 2. Long-term predictions of AL time series in the 14th Bargatze interval. The model input, VBg
time series, is shown on the upper panel. The bottom panel shows the LLF output together with the
observed AL data. The difference between the observed and the predicted time series is shown with gray

shading.
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Figure 3. The prediction error (NMSE) of the mean-field model is plotted as a function of the number
of nearest neighbors (NN) and the number of delays (M). Error surfaces are plotted for AL predictions in
the 31st (a) and 14th (c) Bargatze intervals. To provide a better view on their inner parts, the same
surfaces are replotted for the narrower M range ((b) and (d)), starting from M = 4 instead of M = 1.

its minimum. For the high activity interval the smallest obtained from the nearest neighbors matrix. Unlike the
NMSE values are observed for 2M ~ NN = 14. In the case  global singular spectrum, which has a power law shape,
of low activity, NMSE has several local minima, one of local singular spectrum has a steeper exponential form. The
which (M = 10, N = 5) was chosen for the demonstration run  result of local singular spectrum calculations for the 31st
(Figure 2). With further increase in either of filter parameters ~ Bargatze interval is shown in Figure 4. The spectra were
NMSE starts to grow again. For high NN values it saturates, calculated for the set of 80 nearest neighbors at each point
which indicates that the filter becomes effectively linear. For  of the interval. As can be seen from the plot all spectra are
low NN values, when M increases NMSE grows fast till it  similar in form. The spectra consist of the main exponential
reaches 1.0 again. The overall structure of NMSE surfaces part, which is preceded and followed by the shorter intervals
shown in Figure 3 is very similar to the error surfaces of steeper drop. Moreover, singular values calculated for
presented by Vassiliadis et al. [1995, Figure 12], except different points of the interval and therefore corresponding
their prediction error reaches its minimum at lower M values  to different levels of substorm activity are very similar. This
(2—3) and higher NN values (~30). fact may be interpreted as an indication of self-similarity of
[23] If linear terms are included in LLF expression, then the attractor that underlies the system dynamics.
the filter response can significantly change, depending on its [24] In spite of its steepness, the form of the local singular
parameters. If the tolerance level is high, that is a wide spectra alone does not yield the number of delays M
range of perturbation scales is taken into account in (9), and  required to embed the underlying phase space. Indeed, the
2M ~ NN the algorithm becomes unstable and diverges spectra retain their form over the wide range of scales
after a few steps. This behavior of the filter outcome can be (1073 < wy/wy < 1) without a noise plateau, and conse-
accounted for by the form of singular value spectrum quently the prescription of Broomhead and King [1986]
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Figure 4. Local singular spectrum (LSS) calculated at each point of the 31st Bargatze interval for 2 x
M = NN = 80 nearest neighbors matrix. The insert shows LSS in log scale. The color coding on the main

plot displays Pdf of singular values.

cannot be used to obtain M. The conventional method used
in such cases, i.c., choosing the number of singular values
that minimizes the difference:

[Axn (Axxb) — b (12)
at each step of the iterative predictions, is also not

applicable. This follows from the fact that the variance in
the estimate of filter coefficients:

5 (s <vEN>j)2 (13)

k=1

() =

growths exponentially, which results in a divergence of the
prediction algorithm for M' ~ NN. If M is taken much

greater or much less than NN, the system equation (8)
becomes either underdetermined or overdetermined. In the
first case, the singular spectra have a different form than the
spectra in Figure 4. It has 2M gradually decreasing leading
values, after which there is a sharp drop to the noise level.
Such singular spectra do not lead to the divergence of the
prediction algorithm, however, since the equation system
for the filter coefficients becomes strongly underdeter-
mined, in most cases the prediction error increases. When
the equation (8) is overdetermined the forecasting algorithm
also becomes stable, but in this case the filter becomes
effectively linear, and prediction error increases. If the
tolerance level is low, i.e., only a few leading singular
values are included in the summation in (8), then the
prediction algorithm becomes stable again. However, the
truncation of singular spectrum comes at the cost of
information losses and therefore in this case including
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linear terms in the model does not improve the predict-
ability. On the contrary in most cases this leads to an
increase in forecasting error.

[25] Consequently, for the long-term forecasting of AL
time series the linear terms in the expression for conven-
tional local-linear ARMA filters can be omitted. In this
case the entire prediction procedure reduces to finding the
mean-field response of the system, i.e., the average
response of the similar states of the system in the
reconstructed input—output phase space. The mean-field
model output closely follows the trend of AL data during
both high and low magnetospheric activity, reproducing
best of all the large-scale variations. Thus, the mean-field
model naturally represents the large-scale component of
the AL dynamics. Being regular and predictable, it corre-
sponds to the globally coherent features of the magneto-
spheric dynamics during substorms. Moreover, since the
number of delays M is directly related to the effective
dimension of the system, the results indicate that the
global component of the magnetospheric dynamics has
finite dimension.

5. Data Reconstruction: Multiscale Aspects of
Magnetospheric Dynamics

[26] The mean-field approach to solar wind—magneto-
sphere coupling, described in the previous section, provides
a framework for modeling the large-scale or global dynam-
ics, for example as represented by AL time series, and for
building a framework for space weather forecasting tools.
However, the inability to capture the sporadic peaks and
abrupt variations in the data may limit the utility of the
technique as a space weather forecasting tool.

[27] The inability of the model to yield more accurate
forecasts is due to the divergence of the standard prediction
algorithm, when a wider range of singular values is consid-
ered in the computation of the LLFs. The singular spectrum
is analogous to a Fourier spectrum, and the singular values
are nothing but the coefficients that weigh the contribution of
certain scale perturbations in the observed time series. Thus,
the truncation of the singular spectrum, dictated by algorithm
stability issues, limits the range of perturbation scales.
Moreover, due to the algorithm divergence it is not even
clear what this range is, or whether it is finite or not. This
issue is of great importance for understanding the dynamical
properties of the system as well as for developing more
accurate forecasting tools. Indeed, if the range of perturba-
tion scales that are inherent in the observed time series is not
finite, then since it is directly related to the number of active
dimensions, there is no finite dimensional space that pro-
vides a proper embedding for the system. This means that the
dynamics of the system is not deterministic and the predict-
ability of its evolution is limited to that of the mean-field
model. On the other hand, if the range of perturbation scales
is finite and can be somehow determined at each step of the
iterative predictions, then including the higher-order terms in
filter expression can significantly increase the prediction
accuracy.

[28] This is an important issue for space weather fore-
casting and it can be addressed with use of local-linear
ARMA filters in the form given by equation (7). For this
purpose, instead of making the iterative predictions of AL
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for some testing interval and then minimizing the predic-
tion error by adjusting the filter parameters, and the
tolerance level for the whole prediction interval, filters
can be used in an inverse problem manner. That is, by
comparing the filter outcome with real data at each step of
iterative predictions, the number of terms M’ of local
singular spectrum that gives rise to the observed AL time
series (see (9)) can be determined. Presumably, this proce-
dure, which will be referred as data reconstruction, should
return the different number M’ at each time step. It is
expected that in the case of low-dimensional system M’
should oscillate around the mean value M*, which gives
the linear estimate of the system dimensionality. However,
in the case of a system which has a significant high-
dimensional multiscale component, M’ should have a
sporadic distribution, i.e., M" should be evenly distributed
from 1 to 2M, the total number of input—output embedding
space dimensions, no matter how big is M. This indicates
that the observed time series consist of perturbations of a
wide range of scales.

[29] To elucidate these properties in the case of solar
wind—magnetosphere system, we first consider the case of
a synchronized Lorenz system, whose dynamical properties
are well known. If the X component of one Lorenz attractor
is used as a driver for the second Lorenz attractor, then the
attractors of both systems synchronize at the following
values of parameters: r = 60.0, b = 8/3, 0 = 10 [Pecora
and Carroll, 1990], i.e., no matter what are the initial
conditions of the second system after a few steps its
trajectory converges to attractor of the driver. Thus, the Y
component of the second Lorenz attractor can be considered
as an output of the nonautonomous chaotic dynamical
system driven by the input, X component of the first Lorenz
attractor. The reconstruction of the output by local-linear
ARMA filter with M = 20 and NN = 40 is shown in Figure 5.
As can be seen the reconstructed output literally coincides
with the actual data, NMSE is only 0.03. The number of
terms of the local singular spectrum, which reconstruct the
data best at each step of the algorithm, are shown on the third
panel of the plot. As expected their distribution function has
a narrow peak centered at M* = 6 (the bottom panel of
Figure 5), which indicates that we are dealing with a low-
dimensional deterministic dynamical system.

[30] To investigate how the distribution of M’ changes
when the dynamics of the system has two components, one,
low dimensional and deterministic, and the other, high
dimensional and multiscale, a variation of a synchronized
Lorenz system was considered. The second Lorenz attractor
was now driven by the superposition of the first Lorenz
attractor’s X component and 1/f noise time series. The
reconstruction of such modified Lorenz system is presented
in Figure 6. The filter parameters were chosen the same as
in the previous example. The NMSE in this case is higher
than in the case of the system without noise, but is still very
small, 0.21. The existence of a high-dimensional component
in both input and output time series leads to dramatic
changes in the distribution of the number of singular values
chosen from the local spectrum at each step of the recon-
struction. Variations in M’ now fills the whole range from 1
to 2M, and its distribution function does not have extrema in
this range indicating that these variations are not low
dimensional.
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Figure 5. Reconstruction of Y component of synchronized Lorenz attractor from its driver, X
component. The model input and output together with the real data are plotted on the two upper panels.
Reconstruction error is so small (NMSE = 0.03) that the difference between the reconstructed and the
original time series plotted on the second panel is indistinguishable. Distribution function of the number
of singular values from the local singular spectrum that provides the best reconstruction is shown on the
bottom panel of the plot.
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Figure 6. Reconstruction of Y component of synchronized Lorenz attractor contaminated with 1/f noise
from its driver, X component. The model input and output together with the real data are plotted on the
two upper panels. The difference between the observed and the predicted time series is shown with gray
shading. Distribution function of the number of singular values from the local singular spectrum that
provides the best reconstruction is shown on the bottom panel of the plot.
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[31] The results of AL time series reconstruction with the
use of local-linear ARMA filter (M = 20, NN = 40) are
shown in Figures 7 and 8. As in the case of predictions both
the 31st and the 14th Bargatze intervals are presented. The
reconstructed AL follows the real data much closer than the
output of the simple mean-field model. The NMSE is very
small, 0.14 for the low and 0.18 for the high activity interval,
which corresponds to a factor of four decrease compared to
the long-term predictions. The distribution functions of the
number of singular values required for the best reconstruc-
tion of data at each step of the algorithm are shown in the
bottom panels of Figures 7 and 8. As can be seen from the
plot they are very analogous to M’ distribution function
obtained for the contaminated Lorenz system, i.e., M’ values
are distributed uniformly between 1 and 2M. Moreover, as in
the case of Lorenz system this form of M’ distribution
function holds the same even if the value of M is changed,
no matter how big or small. This indicates that except for the
low-dimensional coherent component, which is well mod-
eled by the mean-field approach, AL contains a substantial
high-dimensional portion, which is also multiscale, i.e., it is
build up by the perturbations of a wide range of scales. This
also means that the reconstruction error should decrease
when M is increased, since it extends the involved range of
perturbation scales.

[32] The plots of NMSE calculated for the reconstruction
procedure as a function of filter parameters is shown in
Figure 9. The error surfaces have a number of features
similar to the surfaces obtained for the mean-field model.
There is an increase and then saturation of NMSE at high
NN values, where the model becomes effectively linear.
There is a steep growth of NMSE at high M values when
NN is small which is associated with strong indeterminacy
of the system given by equation (9). Similarly, there is an
abrupt drop of NMSE from 1 to 0.5 when M goes from 1 to
3. However, unlike the mean-field model error NMSE of the
reconstruction does not have the local minimum at small M
values, after which it starts to grow again with further
increase in M. On the contrary, NMSE decreases with an
increase of M growth. The error decrease is most substantial
along the line NN = 2M, where there is a distinct valley in
error surfaces. When M reaches 15-20, NMSE saturates,
falling as low as 0.15-0.20.

[33] The above results show that the linear terms of local-
linear ARMA filters contain the information about the
component of AL, which is not captured by the simple
mean-field model. This remainder of AL is high dimen-
sional and multiscale in a sense that it contains a wide range
of perturbation scales, and its truncation leads to increase in
prediction error. Inclusion of the proper number of singular
values from the local spectrum can greatly improve the
predictability of AL evolution. However, since the distribu-
tion of singular values required for the best predictions is
uncertain and uniformly fills the whole input—output state
space, no matter what is its dimensionality, it is not clear yet
what prescription will give the proper number of singular
values at each prediction step.

6. Conclusions

[34] In this paper the LLF approach to the magneto-
spheric dynamics modeling, first proposed by Prichard
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and Price [1992], Price and Prichard [1993], and Price
et al. [1994] and later elaborated by Vassiliadis et al. [1995],
has been used to study the global and multiscale aspects of
the solar wind—magnetosphere coupling during substorms.
The filters which were derived from the reconstructed
input—output phase space of the system using VBg time
series as the input and AL time series as the output of the
model were found to reveal both globally coherent and
multiscale features of magnetospheric dynamics during
substorms. Our main results can be separated in two parts.

[35] First, after considering a wide range of filter param-
eters it is found that for the purpose of long-term forecasting
the conventional formula for local-linear ARMA filters can
be greatly simplified. The filter response can be estimated in
a mean-field fashion, i.e., by averaging outputs correspond-
ing to similar states of the system in the reconstructed phase
space. The mean-field method can yield accurate iterative
predictions of AL time series for several days in a row
during periods of both high and low magnetospheric activ-
ity, capturing best of all the large-scale variations of data.
The mean-field model output naturally distinguishes the
component of the AL time series, which is regular and
predictable and therefore corresponds to the large-scale
coherent portion of magnetospheric dynamics during sub-
storms. This result makes the forecasting of the global
behavior simpler and easier to implement compared with
earlier studies.

[36] It is interesting that similar results have been already
reported for autonomous systems by Pikovsky [1986] and
Kennel and Isabell [1992]. In the context of magnetospheric
research Vassiliadis et al. [1995] used the averaging over
nearest neighbors as one of the elements of their ARMA
filters together with the Taylor expansion around the center
of mass. We have shown that the latter expansion is
unnecessary in the specific case of input—output (VBsg,
AL) data set, and the global deterministic component of
the magnetospheric dynamics can be captured by the
straightforward local averaging of the training set in the
embedding space.

[37] Second, our results elucidate the multiscale constit-
uent of the solar wind—magnetospheric activity. We have
found that the portion of AL, which is not captured by
simple mean-field model, can be still reproduced with local-
linear ARMA filters if the number of terms in the local
singular spectrum is optimized by comparing the model
output with real data at each step of predictions. It turns out
that this remainder of AL dynamics contains perturbations
of a wide range of scales, has high dimensionality, and
therefore corresponds to the multiscale features of the
magnetospheric dynamics during substorms. If the proper
number of singular values is used in the calculation of linear
terms of local-linear ARMA filters, then the predictability of
AL can be increased by a factor of four or more compared to
the mean-field model. This gives an attractive prospect for
developing reliable space weather forecasting tools. How-
ever, since the distribution function of the optimal number
of singular values uniformly fills the whole embedding
space, no matter what its dimensionality is, it is not clear
yet how to choose the proper number in advance. It is not
even clear that such a procedure is in general possible, since
this multiscale remainder shares a number of properties with
colored noise.
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Figure 7. Reconstruction of AL time series in the 31st Bargatze interval. The model input and output
together with the observed AL data are plotted on the two upper panels. The difference between the
observed and the predicted time series is shown with gray shading. Distribution function of the number of
singular values from the local singular spectrum that provides the best reconstruction is shown on the
bottom panel of the plot.
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Figure 8. Reconstruction of AL time series in the 14th Bargatze interval. The model input and output
together with the observed AL data are plotted on the two upper panels. The difference between the
observed and the predicted time series is shown with gray shading. Distribution function of the number of
singular values from the local singular spectrum that provides the best reconstruction is shown on the
bottom panel of the plot.
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Figure 9. The reconstruction error (NMSE) is plotted as a function of the number of nearest neighbors

(NN) and the number of delays (M). Error surfaces

are plotted for AL reconstruction in the 31st (a) and

14th (c) Bargatze intervals. To provide a better view on their inner parts, the same surfaces are replotted
for the narrower M range ((b) and (d)), starting from M = 4 instead of M = 1.

[38] From the irregular behavior of LLF linear terms it is
also evident that the multiscale properties of magneto-
spheric dynamics have different nature from those of simple
dynamical systems like synchronized Lorenz attractor,
which reconcile scale invariance with low dimensionality
due to the fractal nature of their attractors. Linear terms of
LLF constructed for such systems are regular which reflects
the existence of smooth manifold that contains the dynamic
attractor on arbitrary small scales. In this case including
higher-order terms into LLF model leads to an increase in
predictability [e.g., Sauer, 1993]. The sporadic behavior of
LLF linear terms derived for solar wind—magnetosphere
system indicates that on small scales there is no smooth
manifold in the embedding space of arbitrary high dimen-
sionality that would contain the trajectories of system. This
also means that the multiscale portion of time the series not
captured by the mean-field model has infinite or high
dimensionality.

[39] Thus, the input—output VBg—AL data with use of
LLFs suggests that the solar wind—magnetosphere coupling

during substorms as observed in AL time series can be
summarized by the following dynamic equation:

4 AL =

p (AL)xy +2(AL, VBq, t)

(14)

where the first term on the right side is the mean-field term,
derived by the averaging over reconstructed input—output
phase space, which describes the global coherent portion of
magnetospheric dynamics, while the second term is
responsible for the high-dimensional multiscale constituent.

[40] The above data-derived picture of the magneto-
spheric activity during substorms in response to the solar
wind driving is consistent with the earlier results obtained
on the basis of the global singular spectrum analysis of
VBg—AL data [Sitnov et al., 2000, 2001; Sharma et al.,
2001]. It was found in particular that the global and multi-
scale properties of magnetospheric dynamics are organized
in a manner similar to conventional phase transitions [e.g.,
Stanley, 1971] with the largest-scale phenomena resembling
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first-order phase transitions in the mean-field approxima-
tion, while the multiscale constituent having properties of
second-order transitions near the critical point. The first-
order transition picture of the magnetosphere was obtained
in the three leading principal components corresponding to
the largest eigenvalues of the correlation matrix with addi-
tional local averaging in that 3D space. The average
dynamics of the magnetosphere is then similar to the regular
motion on a folded surface like the ‘“‘temperature—pres-
sure—density” diagram of dynamical phase transitions [e.g.,
Gunton et al., 1983] or the cusp catastrophe manifold
[Lewis, 1991]. Our present results strongly support such a
description of the mean-field picture. On the other hand, the
results of the global singular spectrum analysis suggest that
the multiscale constituent of the magnetospheric activity
may be neither a colored noise independent of the solar
wind properties as suggested in the models of magneto-
spheric turbulence [e.g., Borovsky et al., 1993, 1997] and
SOC [e.g., Consolini, 1997; Chapman et al., 1998; Uritsky
and Pudovkin, 1998; Lui et al., 2000], nor a direct reflection
of the appropriate multiscale solar wind properties as
suggested by Freeman et al. [2000]. It can rather be viewed
as the multiscale response involving both input and output
parameters as is reflected by input—output critical expo-
nents similar to those of the second-order phase transitions
[Sitnov et al., 2001]. Therefore, further improvement in the
predictability may be achieved by a combination of the
dynamical description for the global component and a
statistical approach for the multiscale component, by study-
ing its correlation with the solar wind input.
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