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[1] The Earth’s magnetosphere is a spatially extended
nonlinear system driven far from equilibrium by the turbulent
solar wind. During substorms it exhibits both global and
multi-scale features which reconciliation has been a long
standing issue. This paper presents a data-derived model of
the solar wind-magnetosphere coupling that combines a
nonlinear dynamical description of the global features with a
statistical description of the multi-scale aspects. This
approach yields deterministic predictions of the global
component of magnetospheric dynamics and probabilistic
predictions of its multi-scale features. INDEX TERMS: 2788

Magnetospheric Physics: Storms and substorms; 2784

Magnetospheric Physics: Solar wind/magnetosphere interactions;

3210 Mathematical Geophysics: Modeling; 3220 Mathematical

Geophysics: Nonlinear dynamics; 3240 Mathematical Geophysics:

Chaos. Citation: Ukhorskiy, A. Y., M. I. Sitnov, A. S. Sharma,

and K. Papadopoulos (2004), Global and multi-scale features of

solar wind-magnetosphere coupling: From modeling to

forecasting, Geophys. Res. Lett., 31, L08802, doi:10.1029/

2003GL018932.

1. Introduction

[2] The coupling of the solar wind mass, momentum and
energy to the magnetosphere is the main driver of geomag-
netic activity observed on the Earth and in space. The
southward turning of the interplanetary magnetic field
(IMF) leads to the accumulation of magnetic energy in the
magnetotail which is subsequently released in the explosive
process known as magnetospheric substorm. The substorms
are episodic in nature and have time scales of an hour or so,
and are associated with global reconfiguration of the mag-
netosphere. Substorms also exhibit phenomena on smaller
spatial and temporal scales, such as turbulence, bursty bulk
flows [Angelopolous et. al., 1999], and fluctuations in the
near-Earth current sheet [Ohtani et al., 1995] and auroral
luminosity [Lui et al., 2000]. The substorm activity is often
quantified with the AL index, which measures the magnetic
field disturbances produced by the substorm current system
closing through the ionosphere.
[3] Due to the wide range of spatial and temporal scales

involved in the solar wind-magnetosphere interaction, de-
veloping first principles models that encompass all the
relevant scales has been a challenge. Recognizing the
capability of nonlinear dynamical techniques to reconstruct

behavior of the system independent of modeling assump-
tions, long time series data of geomagnetic indices have
been used to develop models in terms of a small number of
dynamical variables and these have led to space weather
forecasting tools based on local-linear filters [Vassiliadis et
al., 1995]. However, the low-dimensional models do not
describe all aspects of magnetospheric dynamics. In partic-
ular, it was noted that the correlation dimension of the
magnetosphere as a dynamical system does not converge on
small scales. Moreover, the geomagnetic indices are found
to exhibit multi-scale properties more similar to bicolored
noise than to the time series generated by a low-dimensional
chaotic system [Takalo et al., 1994].
[4] The multi-scale properties of magnetospheric dynam-

ics have been interpreted in terms of multi fractal behavior
of intermittent turbulence and self-organized criticality
[Consolini, 1997], motivated by the observed power-law
behavior [Tsurutani et al., 1990]. However, a state of self-
organized criticality corresponds to the limit of vanishingly
small control parameters [Vespignani and Zapperi, 1998],
thus making the system effectively autonomous and thus
questioning the validity of such models to the magneto-
sphere, whose dynamics is, to a large degree, driven by the
solar wind. An analysis of observational data indicates that
its dynamics resemble non equilibrium phase transitions
[Sitnov et al., 2000]. In particular, it was shown that the
large-scale features of solar wind-magnetosphere coupling
are organized in a manner similar to first order phase
transitions. It was also suggested that the scale-free proper-
ties of the data result from the dynamics in the vicinity of a
critical point, as in second order phase transitions, and a
critical exponent relating the output fluctuations to the solar
wind input was obtained in a form similar to the critical
exponent b [Sitnov et al., 2001]. The phase transition
analogy provides a conceptual framework for combining
the global and multi-scale aspects of substorm dynamics in
a unified model. In this paper the development of such a
model directly from data by combining nonlinear dynamical
techniques with the conditional probability approach is
presented. The solar wind convective electric field given
by the product vBS of the solar wind speed v and the
southward IMF component BS is the input of the model.
The magnetospheric response to the solar wind activity is
represented by the AL index. The model yields accurate
predictions of the average level of AL and also ranks the
probabilities of the discrepancy between the observed and
predicted values of AL.

2. Combined Description of Global and
Multi-Scale Features

[5] The model parameters are derived from the data set
comprised by 34 isolated intervals representing different
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levels of geomagnetic activity. It contains about 4 � 104

points sampled at 2.5 min intervals [Bargatze et al., 1985].
In order to use both vBS and AL data in a joint input-output
phase space their time series are normalized by the respec-
tive standard deviations: It = vBS(t)/svBS

and Ot = AL(t)/sAL
(svBS

= 976 � nT km/s, sAL = 171 nT).
[6] To reconstruct the phase space underling the observed

scalar time series we use the delay embedding technique
developed for nonlinear dynamical systems [Casdagli,
1992]. The set of delay vectors given by

ITt ;O
T
t

� �
¼ It; . . . ; It� M�1ð Þ;Ot; . . . ;Ot� M�1ð Þ

� �
ð1Þ

where M is the total number of delays, yields the trajectory
of the system in the reconstructed space where the
directions of the largest variances reveal the dominant
dynamical variables. These directions are derived from a
principal component analysis [Broomhead and King, 1986]
and the dominant variables of the solar wind-magnetosphere
coupling are obtained by projecting the input-output delay
vectors on the first D principal components (v1, . . ., vD) of
vBS � AL time series as

xt ¼ ITt ;O
T
t

� �
� v1; . . . ; vDð Þ ð2Þ

The multi-scale properties of vBS � AL time series have
different origins compared to those of low-dimensional
chaotic systems, such as the Lorenz system, in which the
scale-invariance is due to the fractal nature of its attractor.
The magnetosphere exhibits a wide range of scales with
properties of high dimensional colored noise, presumably
related to the scale-invariance of its solar wind driver
[Ukhorskiy et al., 2003]. This leads to complicated
trajectories in the phase space on shorter scales, and as a
result, a deterministic model alone does not provide an
adequate description of the system [Ukhorskiy et al., 2002].
[7] To reveal the global dynamics in the presence of

multi-scale features an approach similar to the mean-field
models in statistical physics is used. It was developed as the
generalization of the false nearest neighbors technique of
Kennel et al. [1992] for the case of stochastic dynamical
systems [see Ukhorskiy et al., 2003]. In this approach the
evolution of the system at time t is determined by the
evolution of the fixed number NN of its nearest neighbors,
viz. the states that are closest to it as measured by the
distance in the reconstructed space. These nearest neighbors
are used to compute the center of mass xt

cm as their average
and the state of the system at the next time step is then
written as a function of the center of mass:

O
mf
tþ1 ¼ F xcmt

� �
¼ hOkþ1i; xk 2 NN ð3Þ

However, in the case of many multi-scale systems, the
averaging procedure may not be well defined for chosen
values of the dimension and the number of nearest neigh-
bors. Thus the model requires an additional criterion

if k xcmk � xcmn k ! 0 then jOmf
kþ1 � O

mf
nþ1j ! 0; ð4Þ

which ensures that the mean-field function F is well defined
for the given pair of parameters (D, NN). Then, for a given

NN and the accuracy e, a local minimum dimension Dt is
computed such that the condition jOt+1

mf � Õt+1
mf j < e holds for

each point of the data set, where Õt+1
mf is calculated with

including the current state at time t in the set of nearest
neighbors. The distribution of Dt is then calculated for
different embedding dimensions. If for a chosen value of
NN the mean-field function is well defined in some finite
dimension, the distribution function drops suddenly at this
value. In the absence of such a characteristic behavior NN is
increased and the whole procedure is repeated. For different
values of parameters (D, NN) the dynamical model
(equation (3)) is computed to obtain the optimal pair of
values corresponding to the highest accuracy. This value of
D represents the dimension of the space with the averaging
defined by NN and is referred to as the mean-field
dimension (MFD).
[8] To elucidate the MFD analysis in the case of solar

wind-magnetosphere system the case of Lorenz attractor, a
well known low dimensional dynamical system, is studied.
Figure 1a shows probability density function P(Dt) calcu-
lated for the x-component of Lorenz attractor with e = 0.1.
Function P(Dt) calculated with NN = 3 drops abruptly at Dt

�3–4, indicating that the ensemble averaging is well
defined and that any D � 4 is a good choice for the
embedding space dimension. On the other hand in case of
vBS � AL time series, P(Dt) calculated with small level of
averaging (NN = 3–10) with e = 0.1 have a power-law
shape in Dt = 1–100 range (Figure 1b). This indicates that
the ensemble averaging is ill defined for this range of
parameters and the mean-field model is not meaningful.
For increased levels of averaging (NN � 100) the functions
P(Dt) drop abruptly at finite values. However, unlike the
Lorenz attractor which exhibits the same dimension at all
scales, in the case of coupled solar wind-magnetosphere
system the dimension is a function of the level of averaging.
The higher the value of NN the wider the range of scales
which are smoothed away and the smaller the effective
dimension D of the averaged system, e.g., D = 8 for NN =
100, and D = 3 for NN = 250.
[9] The MFD approach can be effectively used to model

the global component of complex systems such as the solar
wind-magnetosphere coupling. The phase portrait for the
magnetosphere in the three dimensional space spanned by
the first three principal components of vBS � AL time series
is shown in Figure 2. The technique used earlier [Sitnov et

Figure 1. MFD analysis. The probability density functions
of local dimension calculated with e = 0.1. (a) Lorenz
attractor; D = 4 for NN � 3 (b) vBS � AL time series; D = 8
for NN = 100, and D = 3 for NN = 250.
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al., 2000, 2001] for such studies involved cumbersome
procedures such as the removal of the hysteresis loops
and smoothing of the resultant surface. The MFD approach
discussed above resolves these problems by using the most
probable states of the nearest neighbors whose number is
consistent with the embedding dimension and chosen accu-
racy. The surface is shown in the x1 � x3 projection plane
defined by the first (v1) and the third (v3) principal compo-
nents. The component x1 corresponds to the time average
value of input (It) while x3 corresponds to its average time
derivative [Sitnov et al., 2001]. The projection x2 of the data
on the v2 direction, which corresponds to the time average
value of the output (Ot), is color coded. The evolution of the
system along this surface is shown by the two-dimensional
velocity field. The substorm cycles are confined to a surface
which is broadly two-level, and the levels are associated
with the growth phase (orange-yellow colors) and the
expansion phase (black-blue colors). The recovery phase
corresponds to the transition region with blue-orange-
yellow color in the lower left quadrant of Figure 2. The
typical substorm cycle starts with an increase in the average
input x1 while the average output x2 is nearly constant or
slowly decreasing, i.e. the system is in the growth phase,
which may be viewed as the ground state of the system.
During this phase the average input rate x3 first increases
and then decreases to small values. Then the output x2 falls
rapidly to negative values at almost constant values of
the input and this corresponds to the expansion phase of
substorms, which may be viewed as a transition to the
excited state. The recovery of the system to its ground state
involves an increase of x2 while the magnitude of x3
increases to near-zero values.
[10] In the reconstructed phase space the multi-scale

features have been eliminated largely due to the averaging
process. They appear as fluctuations around the smooth
manifold containing the trajectories of averaged system and
their statistical properties depend on the state of the system,
xt, characterized by the input as well as the output, and can
be described in terms of a conditional probability P(Ot+1jxt).
At each time step the conditional probability can be esti-

mated using the nearest neighbors of the current state,
defined in the MFD analysis, as

P Otþ1jxtð Þ � P Okþ1ð Þ; xk 2 NN ð5Þ

To analyze the nature of multi-scale dynamical features the
evolution of conditional probability P(Ot+1jxt) is calculated
in the one and two-dimensional subspaces spanned by v1
and (v1, v3) principal components of vBS � AL time series
respectively. The probability distribution functions P(Ot, x1)
are shown in Figure 3a for different levels of solar wind
activity, represented by the blue, red and yellow colors. The
marginal distribution P(Ot) for all levels of the solar wind
taken together, is the black curve in the back panel of the
plot, and has a power-law shape with a break corresponding
to �AL �500 nT. The distribution functions corresponding
to the medium (red) and high (yellow) activities have distinct
maxima and thus do not exhibit multi-scale behavior. On the
other hand, the distribution function corresponding to the
low solar wind activity has a structure similar to the multi-
scale marginal distribution. However, if the input space is
expanded from one to two dimensions, then the multi-scale
functions P(Otjx1) break into a number of distribution
functions P(Otjx1, x3) with pronounced peaks whose width
and position depend on both the input parameters (x1, x3)
(Figure 3b). With an increase in the phase space dimension
the width of the corresponding distribution functions
decreases until it saturates at the mean-field dimension.
This indicates that a large portion of the multi-scale distri-
bution of AL is directly induced by the similar properties of
the solar wind driver rather than being a result of the
inherent complexity of magnetospheric dynamics.
[11] The strong influence of the solar wind driver on the

multi-scale properties of the system provides a new under-
standing of the magnetosphere and forms the basis for a

Figure 2. Left panel: phase portrait of the global features
of solar wind - magnetosphere coupling during substorms;
right panel: first three principal components of vBS � AL
time series.

Figure 3. Conditional probabilities of AL as a function of
solar wind conditions. (a) P(Ot, x1): The yellow, red and
blue curves correspond to strong (vBS > 9 mV), medium
(0.6 < vBS < 9 mV) and low (vBS < 0.6 mV) solar wind
activity levels, respectively. The floor shows all point in the
database corresponding to the marginal probability distribu-
tion function shown in the back panel. (b) P(Otjx1, x3)
computed for the points at the centers of the blue circles
along the value of x1 corresponding to the low solar wind
activity (blue curve in panel (a)). The circles indicate the
clusters of equal number of nearest neighbors that yield the
conditional probability functions.
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new approach to data-derived modeling. The global behav-
ior can be described by a low-dimensional dynamical
model (equation (3)) based on the mean-field concept and
the high-dimensional multi-scale features on the other
hand are described in terms of conditional probabilities
(equation (5)). The predictions from a model with this
combination of dynamical and probabilistic descriptions
are shown in Figure 4. The AL data is shown in blue in
Figure 4 (bottom) and the iterative predictions obtained with
the mean-field model are shown in red. The mean-field
model effectively reproduces the local average of AL, yield-
ing predictions of the average level of substorm activity. It
should be noted that once the mean-field dimension is
defined following the procedure described above, the pre-
diction process does not need any tuning of parameters,
unlike the earlier local-linear techniques [Vassiliadis et al.,
1995; Ukhorskiy et al., 2002]. Being regular and low-dimen-
sional this component of AL is a manifestation of the global
constituent of substorm dynamics. However, due to the
inherent averaging the model can not capture the abrupt
variations in the data and as a result it underestimates the
substorm activity in many cases. Being a result of the multi-
scale constituent of AL these discrepancies can be described
in terms of conditional probabilities (equation (5)), which are
shown in Figure 4 (middle). Estimated at each time step,
these probabilities are then used to compute the probability
P(Ot+1 > Ot+1

mf jxt) of the deviations from the mean-field
prediction, shown in Figure 4 (bottom). The probability
density functions are computed at each time step using only
those events that correspond to AL values greater than the

mean-field model output. Thus in Figure 4 (bottom) the
deviations are represented by the different shades of yellow
above the mean-field curve. The 100% contour includes all
deviations from the mean-field prediction, including the
sharpest peaks and most of the peaks lie below the 70%
contour. Thus the model yields not only the deviations
from the predictions of the mean-field model but also their
probabilities.

3. Conclusions

[12] The new approach presented here for modeling the
solar wind-magnetosphere coupling is based on the recog-
nition that the magnetospheric dynamics are neither clearly
low dimensional nor completely random, but exhibit com-
binations of these two aspects. The modeling based on the
mean-field concept yields a low dimensional description
and the multi-scale aspects are modeled using conditional
probabilities. Such a combined approach yields an im-
proved and effective tool for forecasting space weather.
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Figure 4. Long-term predictions of AL index for the 29th
interval of Bargatze et al [1985] database. Upper panel:
solar wind vBS data. Middle panel: Probability P(Ot+1jxt) of
AL computed with NN = 50; xt is calculated with the mean-
field dimension D = 5. Bottom panel: the actual AL data
(blue), the mean-field prediction (red); contours of prob-
ability P(Ot+1 > Ot+1

mf jxt) of the AL deviation from the mean-
field model output(yellow shades).
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