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The bremsstrahlung emitted from thermal plasmas which coexist with a flux of relativistic electrons
is caleulated. The emission is found to be greatly enhanced at the fundamental and second harmonie
of the electron plasma frequency. Some possible astrophysical applications of the theory are dis-

cussed.

1. INTRODUCTION

In a recent paper Tidman and Dupree' calculated
the enhanced bremsstrahlung radiation from “ther-
mal” plasmas coexisting with a flux of energetic
electrons. They found that the radiation at w = «,
and 2w, can be enhanced by several orders of magni-
tude compared with the thermal emission from a
Maxwellian plasma with no energetic particles. The
increase in radiation is due to the suprathermal
electrons which drive the wave field of the longi-
tudinal spectrum up to a high amplitude through a
process of Cerenkov emission of electron plasma
ogcillations. These components of the fluctuation
spectrum then collide with each other and with
low-frequeney ion fluctuations and emit electro-
magnetic radiation. The emission formula used in
this calculation was derived nonrelativistically and
for this reason is of limited use to astrophysical
plasmas like the Sun, the Crab Nebula, some radio
sources, ete., which contain electrons with relativistic
energies.

In the present paper we derive the relativistically
exact emission formulas and we apply them to a
“thermal’’ plasma coexisting with a flux of relativistic
electrons. It is found that the previous calculation
underestimates the contribution to the radiation of
the relativistic particles. In order to demonstrate the
importance of the theory for astrophysical plasmas
we present at the end two examples.

In deriving the formulas we use a technique
developed by Dawson and Nakayama.? According to
this method the kinetics of a plasma is investigated
by expanding the distributions in terms of deflections
of the particles from their noninteracting orbits. The
first-order expansion is equivalent to Rostoker’s’
dressed particle picture, that is the plasma is viewed
as an uncorrelated gas of dressed test particles. The
relationship of the expansion to the work of Kli-

1D, Tidman and T. Dupree, Phys. Fluids 8, 1860 (1965).

2 J. Dawson and T. Nakayama, Phys. Fluids 9, 252 (1966).
3 N. Rostoker, Nucl. Fusion 1, 101 (1961).

montovich* and Dupree®® was clarified by Tidman,
Birmingham, Dawson, and Nakayama,” who noted
that if one wishes to go higher than first order, it is
better to expand the fluctuations §f and éE directly.
Thus, one writes

=f+f+ -, 6E=E + E, + ---,

where 8f = f — {f), and {f) is the slowly time-
dependent ensemble average. Since the propagating
transverse field first appears to second order (the
first-order transverse field corresponds to a heavily
Landau damped near zone field), the second-order
equations must be used in computing the emission
formula, and sources in terms of first-order correla-
tions. The first-order equations are then used to eal-
culate the necessary first-order correlation functions.

The present calculations are valid for any infinite,
homogeneous, isotropic plasma with no ambient
electric or magnetic field. It is assumed that sufficient
time has elapsed so that the plasma particles have
no memory of any initial effects. This is achieved
mathematically with the so-called adiabatic switch-
ing factor,” which switches on all the particles at
t =

The plan of the paper is as follows. Section IT is
devoted to a review of the basic equations and the
calculation of the formula for the transverse emission
from the second-order equations. The emission
formula is given as a function of the first-order
sources. There was no attempt at this stage to
explicitly calculate the sources in terms of the one-
body distribution functions. In Section III we
calculate the bremsstrahlung radiation without any
multipole expansion. The emission sources are found
exactly (correct to all orders of magnitude) from the
second-order Dawson-Nakayama equations in terms

— o,

+Y. L. Klimontovich Zh. Eksp. Teor. Fiz. 34, 173 (1958)

[Sov. Phys.—JETP 7, 119 (1958)].

5 T, H. Dupree, Phys. Fluids 6, 1714 (1963).

¢ T. H. Dupree, Phys. Fluids 7, 923 (1964).

?D. Tidman, T. Birmingham, J, Dawson, and T. Naka-
yama, Phys. Fluids 9, 1881 (1966).
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of first-order correlations. The first-order correla-
tions are calculated in terms of the average distri-
bution functions of the species involved. In Sec. IV
the formulas found above are applied to electron-ion
and electron—electron radiation from a plasma with
a tail of relativistic electrons. Since only the longi-
tudinal fields contribute significantly to the radiation
at w,, 2w., only these fields are retained. This is done
in the interest of computational simplicity and
clarity. In Sec. V we compare our results with those
of Tidman and Dupree and discuss the physics of
the situation. Section VI completes the freatment
with the application of the results to a simple model
of (a) the Crab Nebula and (b) the solar corona,
which indicates the relevance of the theory in
astrophysical situations.

II. RADIATION FORMULA IN TERMS
OF SOURCES

As an introduction to the method to be employed
in handling the radiation in the ensuing work, in this
section we review the Dawson-Nakayama equations
to first and second order and then derive the frequ-
ency spectrum of the transverse power emission in
terms of the sources entering the second-order
equations. We consider a fully ionized, multispecies,
classical plasma. The particles are distributed uni-
formly in space with an isotropic (though not
necessarily Maxwellian) spread of momentum. The
usual assumption that the number of particles in a
Debye sphere is large is taken to be valid throughout
this work.

A. Review of Basic Equations

Consider a plasma composed of discrete particles
and assume that there are no ambient electric or
magnetic fields. Let f(r, p, t) be the number of
particles of the « species per unit volume in r, p
space. These functions are given by

Na
fa(r) P, t) = Z; 5[1' - ri(t)] 6[p - pt(t)])
where r;(¢) and p;(¢) are the position and momentum

of the 7th particle of the a species. They satisfy the
Maxwell-Klimoutovich equations:

a9 va),g_] « _
[at+var+Qa (E+ P ap f(r;P: t) ""07
14B

VXE+C“§=0,

V xB l@=‘E2qafdpf“v,

T ¢ ot c
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V-E = 4r anfdp i,

VB = 0.

According to the scheme in Refs. 2 and 7 we
directly expand the singular distribution f* in terms
of the deflections of the particles from their non-
interacting orbits. Thus, if

=4+ o
where {f*) is the slowly time varying ensemble

average and &f° the fluctuations about (f*), we can
directly expand

o = 5+ fa+ o
and in a similar way

SE=E, +E, + ---,

B=B,+ B, + -

Assuming that (E) = (B} = 0, we find to first order
that

9 4 ..9) pe S _
(at + v (91‘>R1(r’ P, t) + ann 6p - 0!
168, _ (1
VXE1 +C at - 0)
1 9E,
VxB =%

4 ; 4
~5 50 [a R n, v = Eie, 0,

3, 0\ .. B
( + V'&) ¢l(r; P, t) - 0,'

Y, 2

e, 0 = X g [ dp vit,p, v,
where ‘

fie, p, ©) = ¥, p, ) + Bilr,p, 0. @)
From the first equation of (2) we get

Yt p, t) = 4i(x —vt, p, 0). 4)

The initial conditions are’
Na
Y@, p, t=0) = ; 8 — 1) 8(p — pio) — (),

Rit,p,t = 0) = 0.

Note from above that the fluctuations f, are split
into two parts ¢, and R,. From Eqs. (1) and (2) we
see that ¢, acts as a source term in Maxwell’s
equations to drive R;. In this way R, can be inter-
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preted as the shielding cloud of ¢, and ¢, as the
fluctuation in the distribution function produced
when the particles move in their noninteracting
orbits [Eqgs. (3) and (4)], thus representing the bare
particle fluctuations (here ¢, is singular and cannot
be zero). Therefore, one is presented with the picture
of the bare particle with its shielding cloud. The
summation over « in (2) is related to Rostoker’s
superposition principle.

In a similar fashion we find the equations to second
order as

9, .9 fo
(at + v 6) (r p) t) + q::EZ O’

1 9B,

V xE, +E——O (5)

1 E,
VB, — "

4 o 4r .
~ B g [driep, v = Eig o,

L - _ K
+ v'ar> ¢2(r7 p, t) - Ga [(El + ap

() w

e, ) = X q. [ dp wite, p, v,

(i
at

v xBl)
¢

(6b)
where

f;(ry P, t) = KL’;(I‘, P, t) + R‘;(Ty D, t)'

The physical interpretation of y,, R, is similar to
the previous one; with ¢, viewed as bare density
fluctuations produced by the direct interaction of
the first-order fluctuations with the first-order fields,
and with R, representing the shielding of these
ﬂuctua,tlons

We note that the form of the left-hand side of
Eqgs. (1) and (5) are identical. They could be written
in Dupree’s® notation as

)

where the components of F; are (f;,, E; B,), of
J1, (0, jo, 0) and of J,, (0, j,, 0). The solution of (7) is
well known as long as we can solve the equations
for j, and j,. In the next section we use the second-
order equations to find the transverse emission
spectrum in terms of j,.

F,=J",‘ i=

1,2,

B. Radiation Formula

We start from Eq. (5} and try to derive the
emission spectmm, for the time being without using

PAPADOPOULOS 2187

Fra. 1. Coordinate system.

Eq. (6) for the specific form of the sources j,(r, ?).
In this respect the following calculation is similar to
that by Birmingham, Dawson, and Oberman® who
calculate the emission from an arbitrary current
source embedded in a plasma.

Defining Fourier transforms as

i, 0) = [dr [ dtexp [~ itker — wblie, 9
Eq. (5) gives for isotropic distributions
4_7”' .’]'“_(k, w)

Bl o) =~ a6 o) ®
where
ok, o) =1 — ’“—C— - T Lk e)
and
Lifk, ) = =" f dp G- vl){[Jv(?‘oéan)]

The coordinate system (i, j, k) used is shown in
Fig. 1. ,

We now use the fact that the rate at which power
is radiated into transverse modes is equal to the rate
at which work is done by transverse current fluctua-
tions on the transverse field. Thus,

+T/2 .
f 4y

3
-T/2 L

W= _ lim

TT—am , L—co

+L/2
G, 0BG, 0).

Using Eq. (8), Parseval’s theorem, and the fact that
Exk, w) = Ez(——k, —w) it follows that

dw < I]si(k w) I2>
f [ ETT

The transverse waves propagate at any frequency

471
(@2m)?* TLT—mo Low

W =

® T. Birmingham, J. Dawson, and C. Oberman,

Phys.
Fluids 8, 297 (1965).
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greater than w,, with a wavenumber k, given by the
roots of
€ (koy w) = 0.

These waves do not suffer any Landau damping,.
Defining a spectrum W(w) as

W=f:de(w)

and carrying out the k integration we obtain the
formula for the emission spectrum as

W(w) = (2wko/87°c") Pk, w), 9
where
Pk, o) = ;;fdk" do’
-exp {ilk — K')x — (0 — o")T]}
(i (s, w)fo (&, @), (10

In the next part P(ko, w) is calculated from the
sources of the second-order equations in terms of the
one-body distribution functions.

III. RADIATION SOURCES AND CORRELATION
FUNCTIONS

In this section we consider the radiation emitted
from plasmas containing relativistic electrons. For
this case, the multipole expansion method used by
Birmingham, Dawson, and Kulsrud® and by Dupree®
ceases to be a useful means of calculating radiation.
Therefore, we calculate the sources without any
expansion.

The calculations are substantially simplified if the
particles are assumed to interact only via their
longitudinal fields. This does not have any effect on
the “wave’”’ part of the emission, since only longi-
tudinal-longitudinal interactions give rise to the
resonant peaks at v = w,, and 2w,."’

A. Radiation Sources

Consider the Fourier transform of Eq. (6) and
keep only the longitudinal fields. Thus,"

j5, o) = ¢. [ dp vy, e, p),

- e 1

ol 0 ) =~ T (v ]
d’ d o o). 5 & D)
Ty Bl e — @) T

(11

¢ T, Birmingham, J. Dawson, and R. Kulsrud, Phys.
Fiuids 9, 2014 (1966). . o

10 K, Papadopoulos, Ph.D. thesis, University of Maryland
(1968). .

1 We neglect the ( ) terms as being of low frequency and
thus not contributing to radiation.

ENHANCED BREMSSTRAHLUNG

Ek —kK,0 — o)

4ri(k — K’
= _T—k(TEF) ; qyn'{(k b k',w - w').
From Eq. (11) integrating by parts
o R dk’' do' 1
Pe) = L0 | oo BT R
ik — K, 0 —o)Qik ), (12)
where
Qi K, w)
= m. [ do 30, o, DE sk, 0, (13)
! 4 8 _
ek wip) = ( — K)o o (1)

Note that 1 — [(k+v)/w] can never be zero for the
cases under consideration sinee w/k > ¢ for trans-
verse emission.””

From Egs. (10) and (12) it follows that

2 2 ’ ’
P — W ,Weq Qs f dw
(k, w) a.g.a w? 'k — k/'z
1
(‘lk—_—krl-i T &, @8k — kK, w — ')
) '
F AT, O K0~ ), (19
where
S, o) = (¥’ | K, o),
AW, o) = (nQ¥ | K/, o), (16)

T, o) = (QL.QH | K, o).

In deriving (15) the following prescription was used
for the ensemble averages'*:

(s, 0) Qi (s, w2, (s, 00) Qi ks, w,))
= @)@ |k, @) 80 — k)
0w — @)(nQ | ks, ws),
ok, — ki) 8(ws — ws) + (niny | Ky, wy) 8k, — ky)
8w — W)@ [ Ky, o) 6y — k) S(ws — wi)
+ Q[ ki, @) 8k — k) 8w, — wi)
{Qmy | e, wp) 80k — ko) 8w, — w3)].

2, k are the emitted frequency and wavenumber related
vig, E_L(k, w) =0,

1 L. M. Al'thshul and V. I. Karpman Zh. Eksp. Teor. Fiz.
47, 15520 (1964) [Sov. Phys.—JETP 20, 1043 (1965)]; B. B.
Kadomtsev, Plasma Turbulence (Academic Press Inc., New
York, 1965), Chap. II.
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Our next task is to calculate the functions given
by (16).

B. First-Order Correlations

We start from the first-order equations (1) and (2)
and after Fourier transforming solve for E,(k, w)
and R5(k, w, v) keeping only the longitudinal fields.

This leads to
47wk
E:(k, w) k2 ‘2-11 ) Z qgNy (k; w):
a afo/0
Rk, 0, D) = 4rq. S0 55 gl o,
where
nil, o) = [ dp ¥ilk, 0, D).
Then
n‘:(k’: O)') = nz(k,) ""’)
' Lo, o) 5~ a0
+ e1(1{1 w) Z w - (17)
Similarly,
Qrik, w) = QiK' o)
A (k :w) as ’ I
+ oy S, w), (9
where
a1, A w:ma k, (6f0/ap)
L', o) = Ic’zfdkv '
A, o) = 2t [ g O o oy s,
3, w) = m. [ dp Y30, ', oK, w5 p).

(19)

Using Eqgs. (17)—(19) the quantities given by Eq. (16)
can be calculated. We are interested in the case of an
isothermal electron—ion plagsma. Thus, neglecting the
ion motion, we find

(nong | K, w”)

Sk, w') = T, T (20)
ceqpr 1
A = L@ P
{1 — L', o) ]*(Q5ns | K, o)
+ A, o) | K, o)) (21)
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1
o, P

(@55 | 'y o) + {1 — LK, o)] A™(E', o)
+ [1 — L'(, o)]* A° (K, o) HQin§ | K, ")
+ |a° &, W) (ning | &', o)}

The spectral densities, {ngn; | k', '), etc., can be
found simply from the equations for the bare particle
fluctuations ¢,. We have that

Tk, ) = 1— LW, o)

(22)

0y, (e, 1)) = b, B) f dv {5(v) 6t — vi),

wherer = r, — 15, ¢ = t, — {,. Thus,

el |, o)
=20 e, ) [ @ 3@ o — K. @3)
In a similar fashion
i |, o) = 20m, [ dp 15@)
0 0,0 p) 86— KW), (24
(@i | &', ') = 2om? [ dp fi(o)
gL &5k, w;p) 6 —Kv).  (25)

Equations (9), (15), and (20)-(25) give the relativis-
tically correct bremsstrahlung radiation due to
longitudinal fluctuations in terms of the particle
distribution functions. For nonrelativistic plasmas
we can approximate g, (k"; k, w; p) by (k& — k'), /m,.
Thus, the nonrelativistic emission formula derived
by Dupree® is recovered.

In the next section we apply the emission formulas
tothe particularsituation of enhanced bremsstrahlung
from a plasma with relativistic electron tails.

IV. ENHANCED RADIATION FROM PLASMAS
WITH RELATIVISTIC ELECTRON TAILS

We are ready to apply the results derived in the
previous section to any plasma whose distribution
function is known.

Assume an ion-electron plasma in which

fo(v) = @m)™V7® exp (—v°/2V7),
fo®) = BE@m) 7V E

where

(26)
exp (—*/2V% + (1 — B)f.®),

V%,e = Tz‘.s/mu‘,ay (1 - ﬂ) << 17 Te ~ Ti’
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fell pl)
| i vz
mVe m¢ |p|'
Fiq. 2. Electron distribution function.
and

0 = e (35) Kt (2)

2 1/2
-exp[ T0 <l+mc) ]

represents a Maxwellian relativistic tail of electrons
(Ty > m,c®) (Fig. 2). K, is the second-order Bessel
function.

We want the wave contribution to the radiation.
This will give the usual peaks at w = 2w, for elec-
tron—electron interactions and at o = w, for
electron—ion interactions. Noticing that m, > m,,
T, ~ T, we can neglect ion dynamics. For the
distributions (26) one finds that

Sk, o ~w,)
ee TD
AK, 0~ w,) =27r( )

me
Tk, o ~w,) |

k/2 2

We calculate next the radiation at w, and 2w,.
A. Electron-Ion Interaction

From Eq. (15) with S*'(0) &~ #6(w) Eq. (9)

reduces to
kD/a €ery t
Weie) = Zlalledide [ g 0 )
7l' C wele |k0 - k |
Using Eq. (28) for 7° and integrating over w for
@ > 0 we find

et — — T -
Ww,) = 3 X 1072 nd/°T;%* (m—"cz) ot

erg/sec cm’®, (29)
B. Electron-Electron Interaction

In a similar way as above
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I)_l

ol () -
k”V2 kV
- ohlse)
k/2v2 kV k,2V2 kl

_ (1= Bl (M) [gi_l W+ We 1]
k% To / L2k'e ™ | — K|

1

() il () o
KVET\E'V .. k"%c* T, / 4k'c
w — ke >
'([w' kel 1)
where
I(@) = (r/2)"" exp (— 2°/2),
_ 1 L exp(—y/2)
R(x) - (27r)1/2P -/‘_w dy y _I_ T
Using the asymptotic expansion
rR@x) =1+ 1/2"+ --- forlarge z
it is found that in the range
wo<tn
o

¢ =2 () (&) () Ketma

Eqgs. (20)-(22) with (23)-(26) become (Appendix A)

27)

1
A*E, @) | [6 — w.) + 3w + w.)]. (28)
Ak, w)|?
e - 2 ‘wl (wz - wz)l/z w_:qz
w (“’) = 87°c° o
kD/ o 1
L. [ g
_(T“(k’, w8k — k', 0w — ')
k — &'
k! WNA*(k — K’ L
4 AL~ Koo — )

Using Eq. (28) and integrating over « for w > 0 we
find

ce - - T, \¥ _
W (2w,) = 1 X 1077 ny*T.%"” (m—;§> a®

30)

erg/sec em®,
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V. DISCUSSION

The formulas derived in Secs. IT and III are the
relativistically correct emission formulas, in terms of
the one-body distribution functions. If we approxi-
mate

o __ v

op 1 — [(k-v)/w)
by I/m, the nonrelativistic formula is recovered. We
note here that such an assumption might lead to
erroneous results if particles with relativistic veloc-
itles are involved. For example the substitution
8/ap by (1/m,)(8/3x) will result in a difference of the
order of the Jacobian,

J(v|/Ipl),

which can be substantial. Also, for generation of
transverse waves with phase velocities w/k > ¢ but
w/k ~ ¢ the approximation 1 — (k-v)/w ~ 1 may be
rather poor and care must be exercised with regard
to the number of terms that must be kept in expand-
ing {1 — [(k-v)/w]} " as a power series in [(k-v)/w].

We compare now the results derived in See. IV
for enhanced emission with the results derived by
Tidman and Dupree. From Tidman'*

Io, = 6 X 107 n*T7*(Vg/c)’a™,
Liw, = 5 X 107 0T *(Vg/c)'a”"

The maximum amount of radiation that one can get
from the above under constant n,, T, is

—-25 _5/2rm—3/2 —4
57 =6 X107 0T, " a7,
. ymax __ 5 X 10—25 ng/2T:3/2a—3.

Zwe
Comparing these with our results and using as a
typical temperature of the tail 7, ~ 5 Mev we get
_W =~ 50, w
T
These results show a substantial increase in the
radiation, over the nonrelativistic case. )
The physies of the enhanced emission is the same
as’ the one described by Tidman-Dupree. The
relativistic particles drive the wave-field part of the
longitudinal fluctuation spectrum up to a high
amplitude through a process of Cerenkov emission
of plasma oscillations. These components of the
fluctuation spectrum, then collide with each other
and with low-frequency ion density fluctuations and
emit electromagnetic radiation. However one should
not fail to notice that the plasma oscillations excited
by the relativistic electrons have phase velocities
close to the velocity of light. Thus if the transverse

4 D, Tidman, Dynamics of Fluids and Plasmas (Academic
Press Inc., New York, 1966), p. 399.

~ 2 X 10°

PAPADOPOULOS 2191

wave resulting from the “collision” of two longi-
tudinal waves has also phase velocity close to ¢, a
further enhancement is achieved, since the wave-
wave interaction is very close to resonance (although
never exactly resonant).

From (29) and (30) one notices the same density
dependence n)’* as In the nonrelativistic case. This
is expected, since the density enters in the formula-
tion via the plasma frequency w,, which in the
present case is controlled completely by the non-
relativistic part of the distribution function.

We note here that recently Lerche,'® starting
from the nonrelativistic formulas of Tidman and
Dupree and substituting into them spectral densities
for distribution funetions with relativistic tails,
concluded that there is a substantial enhancement
of radiation at 2w,. However, although we agree with
this qualitative conclusion, we believe that it is, in
general, inconsistent to try to find effects due to
relativistic particles from nonrelativistic formulas."®

Before considering the examples we mention the
conditions of applicability of the previous formulas
in physical situations. They are exactly the same as
in the nonrelativistic case." That is:

(i) There must be an equilibrium between the
emission and reabsorption (collisionless damping) of
longitudinal waves for the small wavenumber part
of the spectral density in the radiating volume of the
plasma. This is the case when the linear dimensions
of the plasma L are such that

L > w/kyz' (k).

(ii) The Landau damping must be larger than that
the collisional damping in the wavenumber range
considered. That is,

YL > Veo

In the present case the Landau damping is given by

n—x (1_ — __B)___wt (M) .
n®) =1\,
The collisional damping is v, & O(k3/n,).

V1. TWO EXAMPLES

In order to show the relevance of the theory to
astrophysical situations, we briefly examine two
examples. A more detailed account of similar
situations will be published elsewhere.'’

A. Crab Nebula
Consider as typical parameters'® n, ~ 10° em”

% ], Lerche, Phys. Fluids 11, 2459 (1968).

16 K. Papadopoulos and I. Lerche, Phys. Fluids (to be
published).

17 K. Papadopoulos and I. Lerche (unpublished).

18 1. 8. Shklovsky, Cosmic Radio Waves (Harvard University
Press, Cambridge, Massachusetts, 1960), p. 282.

3
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1-8~10"%T,~10*°K, 10" < T, < 10°. We
find then for the radiation at 2w, which corresponds
in the megacycle band that

W (2w,) ~ 107 erg/sec em®.

Although this is a gross estimate and several factors
such as reabsorption should be considered, it shows
that such a process might be of interest in astro-
physical plasmas, in agreement with Lerche.'” A
similar calculation might also explain the unusually
high radiation measured by Hewish et al." from a
small compact part of the Crab Nebula.

B. Solar Corona

For the solar corona we use the model considered
by Tidman,” according to which the source of
radiation is assumed to be a collisionless plasma
shock wave rising through the solar corona. Con-
sidering as typical parameters of the corona
ne =28 X 10°em™>, T, = 10° °K, T, ~ m,¢’, and
1 — 8 ~ 107* The fundamental frequency of the
emitted radiation is then f = 150 Mc/sec. Applying
these values to (29) and (30) we find that

W(w,) ~ W*(2w,) ~ 107" erg/sec em®.

For'a radiating volume of the order 10°° em® this
gives a total power of

& ~ 10" erg/sec

which is of the same order of magnitude with the
experimental observations of the type II solar out-
bursts.

Note that for the above examples one can easily
verify the conditions of applicability of the theory
stated previously.
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APPENDIX A

Here we present the calculation of S°°(k/, w’)
given by Eq. (20) for the distribution function (26).
The values of A**(k’, »") and T"*(k’, ") can be found
in a similar way."®

From Eqgs. (20) and (23) we have that

1 A Hewish and 8. E. Okoye, Nature 207, 59 (1965).
20 D. Tidman, J. Planet. Space Sci. 13, 781 (1965).

ENHANCED BREMSSTRAHLUNG

- orF (', o)
" |Re &, o)|* + |Im ¢k, o")|*’
(A1)

S, o

where

F'R, o) = fdp fo(p®) 8(’ — K’-v). (A2)
For the distribution function (26) with (1 — 8)-
Ty < mV?8, the dominant term is due to the
nonrelativistic part of the distribution funection.
Thus for ¥’ < kp,

3k/2V‘f)1/2

2
Reegk',0) =1+ <2f5 72 (A3)
() w

From (A1) and (A3)

Fk', 0,
|Im &k, )]

ble’ £ (w, + 3EPVHV.

870k’ < kp, @ ~ +w,)

2
= 1w,

A9
From (A2)

P, 0) = 0V exp (- 57%0s)
+0 -8 [d @ s — kW, @)

Using polar coordinates™ (Fig. 1)
I= fdp f®°) 8 —K’'-v)
+1 «
= 21rf dxf dp p* 8 — kvz)f,(p’)
-1 0
2 Lo [ 16y
=0 [ apwre) [ ass(f-a

2rmec
kl 2

6(k'c — ki) f Tdv i@, (A8

where
) 2\ —1/2 2 \~1/2
O

and x = cos 4.
Define

() = f dy, f dy. f dv; fi(vs).
Y Y1 Y2
This is a solution of the differential equation

cevly)
o -1

subject to ¥(v), ¥'(1), ¥'(v) > 0y — =.

21 Here ¢ is the Heaviside function.
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Thus, In a similar fashion
2 . 1/2 2 2
I = 37 melysy ) tm o, 00 = (3) s o (— 8%)
= 2v¥'(vo) + 2‘!/(70)]0(76'0 — |wl).  (A8) (1 — Bu’y’r exp (— vim.c*/To)
From (A5) and (A8) we find for the distribution k'%? Ka(m.c*/T,)
given by Eq. (26) T
wr [ + + - ( > )] . (A10)
F‘(k', w,,) = /3(2'7r)*"2V:‘ exp (— W) Y1 m.C
. R ‘ From (A4), (A5), and (A6) we find that for
4+ A= By exp (= vym'/To) o/ < B < kp/a with
2k"%c Ky(m,c*/T,) . , . K (me/ T
s g)lz<—c—)(o)z chz A
[1+ (T‘;)+ (T)] (A9) ° “QIH(W v.) \md) “a—p @ G
where S”(k,, + wa) o (k’z 2) ( To )
(02 -1/2 W, mec
"= <1 B k“?) ' ke — |w.]) 0’ £ w). (Al2)
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Space, Time, and Energy Distributions of Neutrons
and X Rays from a Focused Plasma Discharge

M. J. BErnsTEIN, D. A. Meskan,* anp H. L. L. vax Paassen

The Aerospace Corporation, Los Angeles, California
(Received 10 April 1969)

The energy spectrum and spatial distribution of neutrons emitted by a plasma focus device were
measured with nuclear emulsions and scintillation detectors, and the results are reported. The average
energy of the D-D neutrons emitted along the axis was shifted ~500 keV corresponding to an axial
center-of-mass veloeity of 2 X 108 cm/sec for the reacting deuterons. An 119, anisotropy in the neutron
fluxes measured in the forward and radial directions correlates with an axially streaming plasma
which is not isotropic; the reacting deuterons collide predominantly in the radial direction. Time-
resolved collimsation measurements of the emitted neutrons showed an axial translation of the neutron
source corresponding to velocities up to 2 X 108 em/sec; this correlates with the nonsimultaneous
pinching of the nonecylindrical plasma along the axis. Plasma densities of ~ 2 X 102° ¢m~3 and ion
temperatures of 2 keV were consistent with observed neutron yields of 10'® and pulse widths of 60 nsec.
X-ray intensity measurements were made for x-ray energies of 7 < E, < 30 keV and showed an E,2
dependence which does not agree with plasma bremsstrahlung, but appears to result from anode
bombardment of axially accelerated electrons with energies > 200 keV. The line radiation corres-
ponded to that of fairly cold ions.

I INTRODUCTION have been reported.'”* We present the results of

measuring the energy spectrum of axially emitted
neutrons, the neutron-flux anisotropy, and the
time-resolved spatial distribution of the neutron

Different mechanisms have been proposed to
explain the intense production of neutrons and
x rays generated by the dense deuterium plasmas
formed in plasma focus devices, for which neutron
yields of 10° to 10", pulse widths of ~100 nsec,
and plasma densities of 2 X 10" to 3 X 10*° em™
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