Electron acceleration using intense electromagnetic waves
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Electron acceleration by an intense electromagnetic wave incident obliquely to the ambient
magnetic field in a plasma is considered. It is shown that the wave amplitude has a
stochasticity inducing threshold. Although substantial acceleration can be achieved below this
threshold, it is limited to the trapping width of a single resonance. Above threshold, the
electrons can accelerate from resonance to resonance. It is also shown that when the parallel
phase velocity of the electromagnetic waves is supraluminous, the Hamiltonian surfaces
describing the wave-particle interaction are topologically open. In this case, electrons gain
large amounts of energy. The mechanism is quite robust, being weakly sensitive to changes in
the wave parameters and the electron’s initial energy; as a result, it is an ideal mechanism for
space applications. As an application, the conditions are obtained for accelerating electrons to

energies of several MeV using ground-based transmitters.

I. INTRODUCTION

Few phenomena span a wider range of laboratory and
astrophysical applications than charged particle accelera-
tion. Prominent among the acceleration processes is plasma
acceleration due to electromagnetic waves. The presence of a
magnetic field allows for resonance to be accomplished via
the cyclotron motion and thus provides the means for direct
particle acceleration by electromagnetic waves. Indeed, ear-
ly studies" indicated that “unlimited” coherent electron ac-
celeration can be accomplished by an electromagnetic wave
of frequency w and wavenumber k if (1) the electromagnetic
wave propagates parallel to the magnetic field; (2) the index
of refraction n = kc/w=1; and (3) the electron velocity v
initially satisfies the resonance condition,

w—w,/y—kv, =0. (D

To obtain Eq. (1), we have assumed an ambient magnetic
field B = B,@,, denoted the nonrelativistic gyrofrequency by
o, = eB,/mc, and denoted the relativistic factor by

y=(1-v?/c?)""? 2)

where e and m are the electron charge and mass, respective-
ly. Coherent acceleration has been thought to play a role in
astrophysical®* as well as in laboratory® plasmas.
Unfortunately, even slight violations of the three condi-
tions just described lead to a sharp deterioration of the ob-
tainable electron energies. Hence this mechanism requires
delicate control of the plasma parameters, the wave charac-
teristics, and the electron injection energies. Such control
can be achieved in the laboratory, but is not possible in space
when considering either naturally occurring® or artificially
created® electromagnetic waves. In particular, one has no
control over the initial electron energies, and satisfying Eq.
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(1) even approximately appears difficult, if not impossible.
We should mention that similar difficulties arise in applying
new concepts of plasma accelerators, such as the beat wave
acceleration’ and surfatron® which, while well suited to the
laboratory, do not appear well suited to most space applica-
tions.

It is the purpose of this paper to discuss a novel stochas-
tic electron acceleration mechanism resulting from the inter-
action of plasma electrons with an electromagnetic wave
propagating obliquely to an ambient magnetic field. It is
shown that, in this case, the electron motion is stochastic.
When, in addition, the parallel phase velocity of the wave is
supraluminous, i.e., k” ¢/ < 1, the Hamiltonian surfaces are
topologically open, and it is possible to accelerate electrons
to large energies. The supraluminous case contrasts sharply
with the well-studied subluminous case®'® where the Hamil-
tonian surfaces are topologically closed and the maximum
energy gain is severely limited. This stochastic mechanism is
quite robust; electrons gain large energies over a wide range
in plasma parameters, wave characteristics (including a
spread in frequency), and initial particle energies—includ-
ing zero initial kinetic energy. However, the energy gain is
diffusive and thus occurs over longer length and time scales
than coherent acceleration. As a consequence, the stochastic
mechanism appears less well suited than coherent mecha-
nisms to laboratory applications where length and time
scales must be minimized.

The properties of the acceleration process, including the
threshold wave amplitude for stochastic electron accelera-
tion and the maximum obtainable electron energy, are deter-
mined by Hamiltonian techniques. We introduce ‘“reso-
nance diagrams,” a graphical technique based on the well-
known resonance overlap criterion.'' This technique allows
us to avoid solving the electron’s equations of motion, which
results in enormous savings in computer time, and, as a re-
sult, makes it possible for us to explore a wide parameter
range. It also allows us to gain insight into the global proper-
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ties of the phase space that would be difficult to obtain from
direct study of particle orbits. This technique is, however,
perturbative and requires validation by direct comparison
with single particle orbits. The accuracy of the resonance
diagram technique was tested successfully by comparing the
results for selected cases against surface-of-section plots'?
produced from single particle orbits.

In this paper we extend the results of previous work® by
determining, in substantially more detail, the variation of the
stochasticity threshold and the maximum attainable energy
as the wave propagation angle, the wave intensity, the wave
frequency, the ambient magnetic field strength, and the plas-
ma frequency all vary. It is shown that while large amounts
of energy can be gained below the stochasticity threshold
when electrons are resonant with cyclotron harmonics, this
energy gain is restricted to a single resonant trapping width.
Above threshold, electrons can move freely from resonance
to resonance leading to much higher energy gains over a
sufficiently long length and time scale. We also correct er-
rors that appeared in our previous work.®

As an application of these results, we consider the re-
mote acceleration of ionospheric electrons from ground-
based radio transmitters. Accelerated electrons could be
used to create an artificial aurora, to probe the magneto-
sphere, and to measure the cross sections of ionospheric con-
stituents interacting with energetic electrons. Such experi-
ments have been carried out to date from rocket and shuitle
borne accelerators'>!'* and have a number of drawbacks. As
part of this application we have carried out a statistical study
of single particle orbits in order to determine the length and
time scales necessary to achieve a high flux of multi-mega-
electron-volt electrons.

The remainder of this paper is organized as follows. In
Sec. II we introduce the Hamiltonian formalism and deter-
mine the resonance locations in phase space and the condi-
tions for their overlap. In Sec. III we determine the maxi-
mum obtainable electron energies over a wide range of
parameters using resonance diagrams and surface-of-section
plots. In Sec. IV we apply our results to the ionosphere and
determine the time and length scales necessary to obtain sub-
stantial acceleration. We present our conclusions in Sec. V.

Il. HAMILTONIAN FORMULATION

The Hamiltonian governing electron motion in the field
of an electromagnetic wave may be written

H = mc*y = mc*[(p/mc + eA/mc?)? + 112, (3)
where, letting

v=kx+kjz— ot (4)
represent the phase of the wave front, we find

A=A [(k /k)sin Y&, + cos Y&,

— (ky/k)sin &, ] + xB4@,. (5)

The ambient magnetic field B, is taken in the z direction, and
p is the canonical momentum. The perpendicular and paral-
lel wavenumbers are defined by k, =ksina and k,

= k cos a, respectively, where a is the angle of propagation.
We have assumed, in obtaining Eq. (5), that the wave is
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right circularly polarized, which is optimum for coupling to
electrons. We further assume that @ and k are related
through the dispersion relation

ke/o = [1-al/o(o—w,)]"? (6)

where o, is the plasma frequency. This dispersion relation is
strictly valid only for circularly polarized waves. Else-
where'> we have considered the consequences of including
the full electromagnetic wave variation and shown that it
leads to little change in the cases considered here. Full details
will be published elsewhere.

To further analyze the Hamiltonian, we make a canoni-
cal transformation eliminating the explicit time dependence.
The generating function is'®

F=p;[z— (o/k)t], @))]
leading to the new variables and Hamiltonian
2 =z— (o/kj)t, p,=p,, H'=H-— (a/k))p,.
(8)
Dropping the primes, the Hamiltonian has the form
H=mc’y — (o/k;)p,. (9)

The electromagnetic field has the same form as in Eq. (5),
but the phase 3 becomes

Physically this transformation is equivalent to making a
Lorentz transformation into the frame where the z depen-
dence is eliminated and then transforming so that the proper
time is replaced by z.

The quantities H and p, are constants of the motion. We
now eliminate p, by absorbing it into x, reducing the prob-
lem to two degrees of freedom. Explicitly,

Dy ek, 4 2
y= [1 +(—-+——i-sm¢

mc  kmc
2
+(£y_+ eAz cosy+ x eB‘;)
mc  mc mc
2 ek, A 27122
+(p —klzsmgﬁ)] . (1)
me mc
Defining the generating function
F=p;, (x+2’-;—)+yp'+p'( —ic‘——cﬁ;—) (12)
¥ eB, o k, eB,)’
we find
+ p; ’
X =x+—=, p.=p,,
+eBo pi=p
L P kel )
VeV B,k B BT
k ’
7=2-22 pi=p
k, eB,

Note that, unlike y, y’ is a constant of the motion. Dropping
the primes, ¥ becomes
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kA 2
y=[l+(&-+———~e ! 3 sinz/z)
me

me ki
eB, )2
mc?

(pz eklA . )2] 1/2
+{—— sin ¢ .
mc  kmc?

The quantity # still has the form given by Eq. (10).
Since y is quadratic in both x and p, , it is appropriate to

+( eA2 cosy+x
mc

(14)

make a transformation to action-angle variables
(p,x) - (J,0), where
. = (2eB,J /¢)"'? cos 6,
¥4 ( 0 ) C ( 15)

x = (2¢J /eB,)"/? sin 6.

This transformation is canonical. It will be useful hereafter
to define the auxiliary quantities

P = (2eByJ /)", p, =p,, p=(2c]/eB,)"".
(16)

Using these new variables, Eq. (14) becomes
o p ed (P :
y=|14+ i + ey +2 e -—n;cos O'sin ¢ cos a
27172
+ﬂ—sinecos¢—£"—sin¢sina) +( eAz) ] s
mc mc mc
a7

where
¢=k"z+klpsin 6. (18)

We now expand Eq. (17) as a power series in € = ed /mc?.
At zeroth order,

H=H;,= mcz7’0 - (a)/k” )P" > (19)
where
Yo= (1 + pi/m’c + p}/m*c*)'2. (20)

At first order, we first define
a, = (mc*/ve){(w, p/2¢)[J,_, (k, p)(1 + cos a)
—Ji 1k p)(1—cosa)]
— (py/me)sin ad, (k. p)}, (21)

where J, (x) is the / th Bessel function of the first kind. We
now obtain

H= H() + GH]’ (22)
where
Ho= 3 asin(kz+00). (23)

= — o
From Eqgs. (19) and (20), it follows that the zeroth-order
Hamiltonian surfaces are hyperbolas in p -p, space when n,
= kjc/w < 1 and are ellipses when n = kjc/w> 1.
We consider next the resonance surfaces. These occur
when

k2 +101l=0, (24)
where
. JH,
AP d 6 = 9 y 25
2|, an lo FY; (25)

z
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or, in other words, when

@, w0, m
Comparing Eq. (19) with Eq. (26), one readily verifies that
the resonance surfaces are elliptic when the zeroth-order
Hamiltonian surfaces are hyperbolic and vice versa. When
both are parabolic, they lie on top of each other.

We compute next the resonance widths using the stan-
dard approach described by Chirikov.!! Assuming first that
the resonances are well separated so that a single resonance
can be considered in isolation, we obtain

H = H, + €a, sin(k;z + 10). 27

We next perform a canonical transformation that eliminates
@ from the Hamiltonian. The generating function

(26)

yields the new canonical variables
zl=z+(l/k )0, ;= z9
[ P: =P (29)

0'=6, J' =J—(/k)p,.
The quantity J' is a constant of the motion. We now focus on
aspecific point (p;,p, o) lying on the/ th resonance surface.
Expanding H,, in a Taylor expansion in p, about that point,
we obtain

oH,
H0=Hg+ 0 (pz _pz,O)
. z 1 J'
1 d°H, s
- (p: — Pl (30)
2 ap: J Pe T Fao
Noting that
M| —o, (31
apz J’
and
2 2
d°H, E__1_= 1 (1__ ) )’ (32)
o |,y M my, kic

we finally conclude

H=Hg+ (12M) (p, — p.o)* + €a; sin(k;z). (33)
It immediately follows that

w = 4|eMa,|'?, (34)

where w is the width of the / th resonance. While use of this
width leads to an overestimate of the point at which stochas-
tic particle motion from resonance to resonance first be-
comes possible,'! a comparison with surface-of-section plots
of single particle orbits shows that it does provide a good
estimate of when a significant number of particles in the
neighborhood of the resonance are free to move stochastical-
ly from resonance to resonance. It is interesting to note that
w becomes singular when both the Hamiltonian and reso-
nance surfaces are parabolic; i.e., ny = k;c/o = 1. This case
can be dealt with by using an appropriate extension of our
present methodology.'® It will be discussed in detail else-
where.

We have determined the location in p; -p, space of both
the Hamiltonian and resonance surfaces, and computed the
resonance widths. All the elements necessary to determine
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when electron motion becomes stochastic are available. This
task is carried out in the next section.

lll. RESONANCE DIAGRAMS AND SURFACE-OF-
SECTION PLOTS

A. Resonance diagrams

From the analysis of the previous section, we conclude
that the parameters that characterize the wave—particle in-
teraction are given by the ratio of the quiver velocity to c,
€ = e4 /mc?, the wave propagation angle with respect to the
magnetic field a, and the ratios of the plasma frequency and
the wave frequency to the cyclotron frequency, @,/w. and
w/®,, respectively. The wavenumber k is then determined
by the dispersion relation. In this study we concentrate on
values of @ for which w?/[w(w —®,)] <1 and @/w,>1.8;
in this range the dispersion relation [Eq. (6) ] is a reasonable
approximation. For w ~ &, the cyclotron resonance strong-
ly influences the wave and dispersion relation, and Eq. (6) is
no longer useful. For w <., Eq. (6) can be used if w, is very
small, but the resonances are spaced too far apart to lead to
resonance overlap.

Typical resonance diagrams that we use to represent
graphically the theory of the previous section are shown in
Figs. 1 and 2. The Hamiltonian surfaces given by Eq. (19)
are shown as solid curves in the p -p, space, while the reso-
nant surfaces given by Eq. (21) are shown by small dots. The
large dots indicate the resonance widths and are the corner-
stone of the resonance diagram technique. These widths al-

p,/mc

(b)

Loy

FIG. 1. Resonance diagrams (o/w, = 1.8, o,/w, =0.3, €=0.2). (a)
a =15 (b) a =20

Ho = mc’j
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i
H°=mcz-fL/=

FIG. 2. Resonance diagrams (w/w, = 1.8, @,/w, =03, e=0.1). (a)
a =20 (b) a=>50, (¢) a=80".

low one to determine by simple inspection the nature of the
acceleration process and the maximum energy gain for a
large array of different initial electron energies.

Resonance widths smaller than the spacing between
large dots are not shown. When the large dots are continu-
ously connected (i.e., are evenly spaced with no large gaps)
in the neighborhood of only a single / resonance, the electron
motion is regular. When they are continuously connected
between several resonances, the electron motion is stochas-
tic. -

In Fig. 1, the parameters are w/w, = 1.8, 0,/0, = 0.3,
and € = 0.2 at two different angles of propagation. The value
w,/w. = 0.3 corresponds roughly to the nighttime iono-
sphere at 130 km,'”'® while ¢ = 0.2 corresponds to a power
flux of 20 W/cm? Paying particular attention to the
H, = mc? surface, on which electrons accelerated from zero
initial kinetic energy are located, we see that when a = 15°,
the resonances are separated, and an electron with zero ini-
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tial kinetic energy is confined to the / = 2 resonance. We
note that even though the electron is confined, it gains sub-
stantial energy; in this case almost 1.5 MeV. When the angle
a = 20°, all the resonances visible on the H, = mc? surface
overlap. At larger angles similar results are obtained. As a
consequence, electrons with zero initial kinetic energy can
gain substantially more than 5 MeV of energy.

The surfaces where H,# mc? correspond to electrons
with nonzero initial kinetic energy. From both Figs. 1(a)
and 1(b) we observe that electrons which initially have a
large, positive parallel momentum move stochastically and
will accelerate to high energies, while electrons which initial-
ly have a large, negative parallel momentum do not gain
energy.

Similar results are shown in Fig. 2 when € = 0.1, corre-
sponding to a significantly lower power flux of 5 W/cm?.
Only the angles are increased. As a increases from 5° to 50°,
one finds that the resonances on the H, = mc? surface all
eventually overlap, indicating that at large angles, electrons
with zero initial kinetic energy will gain 5 MeV or more. The
resonance overlap persists up to 80° where a slight gap devel-
ops as shown in Fig. 2(c). As we will show in detail in Sec.
IV, this gap does not mean that electrons cannot be acceler-
ated up to 5 MeV. The gap is small, and a fraction of the
electrons can accelerate “through the gap”; however, these
electrons exhibit sticky behavior, so that their rate of energy
gain is reduced. As we move off the H, = mc? surface at
large angles, we find from Figs. 2(b) and 2(c) that thereisa
cone of initial conditions where electrons can be accelerated
to large energies. If p, is large, regardless of sign, and p, =0
initially, then no significant acceleration occurs.

Examination of a large number of different cases indi-
cates that acceleration on the H, = mc? surface is almost
always enhanced by using large angles of propagation. The
only exceptions found are at angles greater than or approxi-
mately equal to 80°, where small gaps can develop at zero
kinetic energy as shown in Fig. 2(c) when overlap at lower
angles is weak. No such gap develops for the parameters of
Fig. 1. This behavior contrasts sharply with the unlimited,
coherent acceleration'? that occurs when a = 0° and the in-
dex of refraction n = 1. From our point of view, unlimited
acceleration occurs because the / = 1 resonance surface—
the only one that exists—coincides exactly with a Hamilto-
nian surface. An electron whose Hamiltonian has the right
value will thus be swept away to infinity.

As the angle increases, the range of Ap where the elec-
tron is in the neighborhood of a single resonance decreases.
At the same time, the separation between resonances de-
creases, so that it is easier for the electron to move from
resonance to resonance. There is a trade-off between these
two effects, and it is not evident a priori which effect will
dominate; our results indicate that it is the latter in most
cases.

We now consider the effect of varying w/w, while fixing
w,/w, = 0.3, corresponding to the strongly magnetized lim-
it or the nighttime ionosphere at 130 km. In Fig. 3 we show
resonance diagrams as w/@, varies from 1.8 through 2.2 at
a = 20°. These diagrams indicate that it is impossible to ac-
celerate electrons to high energies from zero initial energy
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FIG. 3. Resonance diagrams (@,/0, = 0.3, @ = 10°, €= 0.3). (a) w/o,
= 1.8, (b) w/w, = 2.0, (¢) w/w, =2.2.

except when w/w, = 1.8. As we shall discuss in more detail
when comparing the resonance diagrams to surface-of-sec-
tion plots, KAM surfaces appear that block electron accel-
eration when w/w, = 2.0 or 2.2 for the parameters of Fig. 3.
For this reason, most of our examples consider frequencies
just below multiples of the cyclotron harmonic, particularly
at small angles where this effect is more pronounced. In Fig,
4, we show resonance diagrams for the frequency range
o/w, = 2.8-4.8. Figures 3(a) and 4 indicate that in the fre-
quency range 1.8—4.8 there is a slow falloff in the resonance
widths as the frequency increases.

Similar behavior is visible at all angles and amplitudes
we examined. There is a slow falloff in the resonance widths
as w/®, increases, and one finds that beyond some point it is
no longer possible to accelerate electrons from zero kinetic
energy. More important than this weak falloff is the in-
creased power flux required to attain a given value of €. The
relationship is
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1=2

Hoamc’

FIG. 4. Resonance diagrams (0,/0, = 0.3, 2 =20°, ¢ =0.2). (2) /0,
=28, (b) w/w, = 3.8, (¢) w/w, =4.8.

@ 2

P~30 (e——) W/cm?, (35)
wC

Thus there is a quadratic increase in the power flux required

as w increases. We conclude that the power requirement is

lowest at the smallest frequencies possible before propaga-

tion effects become important.-

We now consider the effect of setting w,/w, = 2, corre-
sponding to the weakly magnetized liniit or the daytime ion-
osphere at a height between 110 and 120 km. In this case, the
frequency w/w. is bounded by the condition
wy/[o(w—-w,)] <1 to values w/w, >2.6. In Fig. 5 we
show resonance diagrams for w/w, = 3.0, and in Fig. 6 we
show resonance diagrams for w/w, = 4.0. These diagrams
indicate that when w/w, = 3.0, no significant electron accel-
eration occurs, while when w/w, > 4.0, it is possible to
accelerate electrons to 5 MeV and more if o> 60° and
€ = 0.3. A complete examination of resonance diagrams in
the range 3.0 <w/w, <4.0 indicates that w/w, > 3.8 is the
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condition for significant acceleration. Comparing Figs. 5
and 6, one sees that the resonances grow more closely spaced
as w/w, increases, which appears to account for the differ-
ence.

A complete examination of resonance diagrams shows
that when a < 60°, no significant acceleration occurs at any
frequency. As w/w, increases beyond 4.0, there is a slow
falloff of the resonance widths, similar to that observed in the
strongly magnetized case.

B. Surface-of-section plots

The resonance - diagrams, based on Chirikov’s ap-
proach,'! are calculated perturbatively. We now turn to the
study of single particle orbits, using surface-of-section plots,
to determine the reliability of the resonance diagrams. We
have found that the resonance diagrams yield reliable results
in all the cases we examined, indicating to within a factor of
2 the amplitudes at which substantial acceleration occurs.
The method for generating surface-of-section plots from the
particle trajectories obtained by solving the equations of mo-
tion has been well described elsewhere.!"'? In brief, the
Hamiltonian H(p,,z,J,6) is a constant of the motion; hence
all trajectories with the same Hamiltonian value reside on a
three-dimensional surface in phase space. If for each trajec-
tory we now plot either the point (z,p, ) or the point (p,,p, )
whenever 6 returns to zero, we find that two possibilities
exist. The trajectory is regular, in which case the points are
located along a one-dimensional curve, or the trajectory is
stochastic, in which case the points fill a two-dimensional
region densely. For the purpose of acceleration, the stochas-

pn/me

(@) 10

ST

Sl y 14
Ho=meed L,-5 L,_-

lll;,“=‘r.nc‘—’ £/ -5 Li-BE/ -

FIG. 5. Resonance diagtams (w/@, = 3.0, w,/w, = 2.0, €==0.3). (a)
a =60, (b) a = 80"
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p——

Hg = mc’J
FIG. 6. Resonance diagrams (w/w, = 4.0, ,/w, = 2.0, ¢=03). (a)
a =60, (b) a= 80"

tic trajectories are good since electrons on them can achieve
high energies, while regular trajectories are bad. Not only do
electrons on these trajectories not accelerate, but these tra-
jectories can act as KAM barriers to the continued accelera-
tion of stochastic electrons.®'!!?

We have made comparisons of resonance diagrams and
surface-of-section plots in 30 cases covering the parameter
ranges of interest with H, = mc” in all cases. In Fig. 7 we
exhibit a typical comparison. We use a variable time step,
variable order, Adams—Bashforth approach to solve for the
particle orbits in the surface-of-section plots.

In Fig. 8 we show surface-of-section plots correspond-
ing to the H, = mc? surface in Fig. 3. When w/w, = 1.8, the
I = 2 resonance occurs at a sufficiently high p, value so that
the acceleration of electrons from zero kinetic energy is not
obstructed, although it is impeded somewhat because of
stickiness. By contrast, when w/w, = 2.0 or 2.2, KAM sur-
faces appear near p;, = 0, blocking acceleration from zero
kinetic energy.

IV. THE rf ACCELERATION OF IONOSPHERIC
ELECTRONS

We now apply our results to determine the power den-
sity that would have to be achieved by ground based rf facili-
ties to create large fluxes of relativistic electrons in the iono-
sphere. Such a technique, if it proves successful, will have
important consequences in the area of ionospheric and mag-
netospheric modifications and probing. The model of the
ionosphere and wave propagation that we are considering is
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(@

mc¢

) 10

Pu
‘mc

FIG. 7. Comparison of resonance diagrams and surface-of-section plots
(/0. =18,0,/0, =0.3,a = 10°, € = 0.1). (a) Resonance diagram, (b)
p-p, surface-of-section plots, (¢) kjz-p, surface-of-section plot. On the
surface of section, an X indicates the initial condition. Twenty trajectories
were followed.

idealized in a number of important respects: We have used
standard, averaged values for the daytime and nighttime ion-
ospheres, neglecting the effects of spatial and temporal inho-
mogeneities. We also have not examined self-consistent ef-
fects or the effect of finite bandwidth, although these are not
expected to be of great importance. Finally, and most impor-
tant, we do not consider propagation and accessibility issues;
these must be addressed before we can determine whether
the necessary power can be focused into the interaction re-
gion. Nonetheless, our approach does provide a useful esti-
mate of the wave power parameters needed to achieve signif-
icant acceleration in a given region of the ionosphere.

We stress also that the stochastic acceleration mecha-
nism described here, because of its robustness, is certain to
play an important role in a wide variety of space and astro-
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(b)

0 kyz 2n

FIG. 8. Surface-of-section plots for the same parameters as in Fig. 3.

physical settings. An example is the Crab Nebula,'® which
will be discussed in detail elsewhere. ,

Using simple scaling arguments,® we find that during
one trapping time in the wave 7 = 1/we'/?, the change in
momentum is roughly mce'/2. Assuming that the electron
motion is chaotic, we find

((AP)) V2~ (mce'?) (1 /7)V? = mce >4 (wt) '/, (36)

where ((Ap)?)!/? is the average momentum change of the
electron distribution. Equation (36) is expected to underes-
timate significantly the time needed to achieve a given
{(Ap)?)"/? since it does not take into account the Bessel
function factors or stickiness, Since it minimizes the power
consumption to operate as close as possible to the stochastic-
ity threshold, stickiness can play an important role. Simula-
tions to be presented shortly support this conclusion. As we
shall verify shortly, the parallel electron velocity is approxi-
mately ¢ cos a during most of the acceleration process when
€ is well above the stochasticity threshold. Hence we find

((APYDV2~mce*[wz/(c cos a)]'/? (37)

as the electrons pass through the acceleration region.
Equation (37) indicates that large angles are preferable
for accelerating electrons when attempting to maximize the
fraction of electrons that achieves a given energy over a fixed
distance. However, there is a counterbalancing geometric
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FIG. 9. Schematic illustration of the acceleration region geometry.

effect that must be taken into account; the high intensity
region where electrons are accelerated will be longer along
the direction of propagation than perpendicular to it, as
shown in Fig. 9. The ratio r of parallel to perpendicular
length depends on the details of the transmission system.
The length d that electrons travel along the propagating re-
gion is given by

d=d,/(cos’ a + r?sin’* a)'??, (38)

where d; is the length of the interaction region in the direc-

tion of propagation. Thus the time spent in the interaction

region is

t=d/(ccosa) = (d,/c)/(cos’ a + r?sin’ a@)'/? cos a.
(39)

We find that if r < 2, the interaction time is a minimum along
the direction of propagation. If 2 <7 < o, the minimum is
somewhere between a = 0° and a = 45°. In Fig. 10 we show
the residence time as a function of @ when = 4. In all cases
the residence time is maximized by using large angles.

To justify our previous statement that v, ~c cos a, we
use Eq. (19) to obtain

2.0
tc/dn
1.0
o-c T T T T T T T T
0 a 20

FIG. 10. Plot of residence time versus angle of propagation.
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1=y— (y,/c)/(ncosa), (40)

on the H, = mc? surface, where we have dropped the 0 sub-
script in Eq. (19) and employed the relation p, = ymv,. We
conclude

v, =[(y— 1Dn/ylccos a. 41)

When n~1, v, »¢ cos a as y increases.
We now turn to the results of our simulations. We con-
sider the following set of parameters: w,/w, = 0.3, w/w,
= 2.0,€ = 0.2, and @ = 80°. At this value of ¢ the stochastic-
ity threshold is well exceeded. These parameters correspond
to the nighttime ionosphere at roughly 130 km, a power flux
of 20 W/cm?, and a frequency of 2.6 MHz. In Fig. 11 we
exhibit histograms of the electron number versus the relativ-
istic factor at various times. There are 256 electrons and they
start at ¥ = 1, spread evenly over the different initial values
of ¥ = kyz + k,x. The equations of motion are integrated
using a variable order, variable time step Adams-Bashforth
approach, just as in the surface-of-section plots. The diffu-
sive nature of the energy increase is evident. In Fig. 12 we
show a similar set of histograms of the electron distance.
While they are peaked at the maximum distance,
d = ct cos a, there is a considerable spread. In Table I we
show the fraction of electrons that reaches a value of y = 10,
corresponding to roughly 5 MeV. 7
In Figs. 13 and 14 we show similar results for almost the
same parameter set as in Figs. 11 and 12: 0,/0, = 0.3, 0/w,
= 2.0, and a = 80°. The only difference is that € is equal to
0.1 rather than 0.2. These parameters correspond to Fig.
2(c). At this value of ¢, the field amplitude is only slightly

(a) 64 —

® ¢4 ~

() 32 A

1 10 25

FIG. 11, Histogram of particle number versus ¥ (¢ = 0.2). (a) .t = 1000,
(b) @ .t = 2000, (¢) @t = 3000.
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FIG. 12. Histogram of particle number versus parallel distance (€ = 0.2).
(a) @t = 1000, (b) w.t = 2000, (c) w.t = 3000.

above the stochasticity threshold, and the effect of stickiness
is apparent. While a substantial fraction of electrons is able
to accelerate to high energies, a substantial fraction is also
confined below 1 MeV. Because of the stickiness, Egs. (36)
and (37) are not useful guides to the electron behavior in this
case.

We now consider the possibility of accelerating elec-
trons in a region of the ionosphere 20 km X 10 km. In this
case, the area covered is 2X 10'> cm? The total power re-
quired when € =0.1 is thus 10> W, If we launch 1 msec
pulses with a duty cycle of 1 per minute, we find an average
power of 10®° W. These values may be realizable using mod-
ern-day technology and open up the exciting possibility of
using remotely excited electrons as near-space probes.

V. CONCLUSIONS

We have considered electron acceleration in the field of
intense electromagnetic waves. We found that above a cer-
tain critical intensity threshold electron motion becomes sto-
chastic. In addition, when the parallel phase velocity is su-
praluminous, the Hamiltonian surfaces are topologically

TABLE L. Fraction of electrons with > 10 and the average distance trav-
eled when o,/0, =03, v/0, =2.0,a = 80", and € = 0.2.

F(y>10) w.t Z(e=0.2)
0.005 500 3km
0.08 1000 7km
0.25 2000 18 km
0.36 3000 27 km
Menyuk et al. 3776
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FIG. 13. Histogram of particle number versus y {€ = 0.1). (a) w.¢ = 1000,
(b) @t = 2000, (¢) w .t = 3000.

open and the electrons can gain truly enormous amounts of
energy. While electron energy gains can be substantial below
the stochasticity theshold, they are limited by the trapping
width of a single resonance. Above the stochasticity thresh-
old no such limitation applies. In addition, the stochastic
mechanism is robust. It is only weakly sensitive to shifts in
the wave’s frequency and angle of propagation, in sharp con-
trast to coherent acceleration mechanisms. As a conse-
quence, the stochastic mechanism is ideally suited to space
applications and is certain to have applications in a wide
array of space and astrophysical settings.

To determine the intensity threshold condition and the
attainable energies, we used resonance diagrams based on
the overlap criterion. These diagrams are rapidly calculable,
allowing us to explore a broad range of parameters. The ac-
curacy of these diagrams was verified using surface-of-sec-
tion plots. The results of this study were then applied to
determine the conditions under which substantial fluxes of
high energy ionospheric electrons could be obtained using
ground-based rf transmitters. Using simple simulations, we
found that it may be possible to achieve the desired accelera-
tion using present-day technology, opening the door to a
variety of interesting applications.
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FIG. 14. Histogram of particle number versus parallel distance (€ =0.1).
(a) w t = 1000, (b) @t = 2000, (¢) w.t = 3000.
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