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Complexity in Nature and Data-enabled Science:
The Earth’s Magnetosphere

A. Surjalal Sharma
University of Maryland, Department of Astronomy

College Park, Maryland, 20742, USA

Abstract. Understanding complexity in nonequilibrium systems requires multiple approaches 
and the well established approaches of experiment, theory and numerical simulation have led to 
the key advances. The data-enabled science, referred to as the fourth paradigm, is an inherently 
suitable framework for the study of complexity in nature. The data-driven modeling of the 
Earth’s magnetosphere, based on the dynamical systems theory, highlights the achievements of 
this approach in the study of complexity in natural systems.
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Complexity science is widely recognized as studies of organized behavior of 
systems that are intermediate between perfect order and perfect disorder. Interactions 
among interdependent components of a system lead to a competition between 
organized (interaction dominated) and irregular (fluctuation dominated) behavior, and 
consequently to complexity [1]. Early studies of complex systems were focused on 
model dynamical systems with a small number of degrees of freedom, e. g., the well-
known Lorenz attractor, and have provided deeper understanding of the inherent
properties. The understanding achieved with such dynamical systems has enabled a 
new focus on extended systems with many interdependent components which exhibit 
regular as well as irregular behavior. In such systems, the behavior of the whole 
system is more than the sum of their parts. Many natural and anthropogenic 
phenomena exhibit features readily recognized as typical of complex systems. For 
example, the plasma in Earth’s magnetosphere is inherently nonlinear and exhibit 
instabilities, nonlinear behavior and nonlinear coupling among the unstable modes. 
While these processes are complex and lead to irregular behavior, on larger scales they 
exhibit certain classes of simple behavior that seem insensitive to the details. During a
magnetospheric substorm, which is the basic phenomenon responsible for the auroras, 
a multitude of plasma processes - from the microscopic to the macroscopic - act 
together to yield large scale coherence. The empirical evidence of the episodic or 
convulsive nature of the magnetosphere [2] is now understood in terms of its low-
dimensional dynamics [3, 4]. However, the magnetospheric dynamics is not limited to 
low-dimensional behavior and multiscale features are evident. Thus the 
magnetosphere exhibits both coherence, described by low-dimensionality, and 
multiscale behavior, arising from the internal dynamics as well as driven by the 
turbulent solar wind.

Numerical simulation is an essential approach in the study of a wide variety of 
complex phenomena. For example, plasmas are inherently nonlinear and simultaneous 
interaction of a large number of degrees of freedom in such nonlinear systems limits
the theoretical approach. In the case of plasmas the fundamental laws governing 
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plasmas are known but their consequences can not be worked out because of the 
complexity, making numerical simulation a suitable approach [5]. In this approach a 
numerical model of the system is constructed, e. g., based on the fluid and kinetic 
plasma descriptions.  Then numerical experiments are carried out on a computer, 
allowing the system to evolve from given initial conditions in accordance with the 
laws used. This approach or paradigm of numerical simulation, often referred to as the 
third approach, has provided much of the advances in our understanding of complex 
systems. Along with the approaches of experiment and theory, numerical simulation is 
now a distinct intellectual and technological discipline.

Although science has always been data-driven, recently there has been 
dramatic change in the amount of data used in research. There are two origins of large 
and massive data (‘Big Data’) in research. The first is large scale numerical 
simulations. For example, particle-in-cell simulations of magnetic reconnection and 
laser-plasma interaction use 1010 particles on computers with more than 16 petaflop 
capacity and typically generate exabytes of data. The simulations of medium-range 
weather forecast models generate many exabytes, and multiple runs are needed for 
forecasts with the ensemble modeling approach. The second source of massive data is 
observations and the situation is similar, if not more challenging. For example, in 
gravitational wave astronomy LIGO acquired 2 petabytes of data in the past decade 
and the Advanved LIGO instruments (aLIGO) will generate about 1 petabyte of raw 
data per year, which will be replicated between the geographically distributed 
observatories and computer centers at the same rate as it is acquired. The Square 
Kilometre Array, which will be the world’s largest and most sensitive radio telescope, 
will have data rates of many petabits per second, which is more than 100 times the 
current global internet traffic. The challenges in research using the massive or 
complex data have stimulated a new approach that is now referred to as data-enabled 
science [6]. This emerging approach to science is referred to as the fourth paradigm,
the first three being experiment, theory and simulation [7]. This new approach is not 
just data exploration and understanding, but is the use of the data to enable discovery 
and new understanding. In many nonequilibrium systems including plasmas,
significant advances have been achieved with this approach, especially in the 
modeling of multiscale phenomena [8]. In fact, the earliest forecasting tools for space 
weather were based on data-enabled models developed from the data of the solar 
wind-magnetosphere coupling [4].

Although data-enabled science is an emerging paradigm, there has been many 
important advances already. For example, the phase space reconstruction based on the 
nonlinear dynamical systems theory yields the dynamical and statistical features of 
many natural systems, independent of modeling assumptions. For some applications,
this approach yields models whose predictive capabilities surpass those of the first 
principle models, e. g., in space weather forecasting. An important advantage of data-
enabled modeling is the capability to provide insights into non-equilibrium systems, in 
particular extreme events and natural hazards. Extreme events are ubiquitous in 
natural, social and financial systems, and from a science perspective, they are an 
emergent property of complex nonlinear systems in which the interaction among 
interdependent components lead to a competition between organized and irregular
behavior. Recent advances in nonlinear dynamics and complexity science provide a 
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new approach to the understanding of extreme events [9]. This paper provides an 
overview of the data-enabled studies, using the case of the Earth’s magnetosphere as 
an archetypical complex system in nature. Many phenomena in geosciences are 
inherently nonequilibrium and the data-enabled approach has led to important 
advances in the modeling of such systems [10].

COMPLEXITY OF THE EARTH’S MAGNETOSPHERE

The Earth’s magnetosphere is a multiscale system that exhibits episodes of strong
coupling over a wide range space and time scales. The characteristic spatial scales 
span the range from the electron skin depth (~ a few km) to the global scale (200 RE
~105 km). Numerical simulation of such multiscale systems is a challenge as they 
require multiple physics models that cover the relevant scales and the coupling among 
them. In the case of plasmas, this leads to additional difficulties because of the need to 
include kinetic processes as the scale sizes in simulations using fluid models approach 
the microscales. Most large scale simulations of the magnetosphere are driven by the 
solar wind and have followed the top-down approach. The numerical codes based on 
the ideal MHD model [11, 12] simulate the solar wind-magnetosphere coupling with a 
spatial resolution of an ion Larmor radius (~500 km), and are at the limit where the 
coupling to kinetic codes becomes important. The hierarchy of phenomena in the 
magnetosphere during a magnetic reconnection event is illustrated in Fig. 1. The 
global MHD simulations [11] provide the large scale features of the magnetosphere 
resulting from reconnection in the magnetotail. It should be noted that in the 
simulation code based on the ideal MHD model, the magnetic field is frozen into the 
plasma and thus cannot undergo reconnection. The reconnection in the ideal MHD 
codes is due to an effective resistivity arising from the finite grid of the simulation 
domain. The characteristic scales in these simulations correspond to those of Alfven 
waves and provide the connectivity of the different parts of the magnetosphere. In next 
level of simulations based on the Hall-MHD model the electron and ion fluids are 
decoupled, thus relaxing the frozen-in condition and allowing magnetic reconnection 
[13]. A characteristic feature of reconnection is the generation of Hall currents and
consequently a quadrupole magnetic field [14] is generated, as shown in the first inset 
in Fig. 1. The Hall MHD is essentially a limit of a two-fulid (electron and ion) model, 
in which the electron inertia is neglected and the plasma thus evolves on the time scale 
of the ions and the typical space scale is the ion skin depth. The mesoscale phenomena
involve many wave modes and processes and exhibit cross-scale coupling [15]. On the 
finer scales, the ion dynamics can be neglected and electron fluid is described by the 
electron-magnetohydrodynamic (EMHD) model [16]. In this model all perturbations 
are on the electron scale and are essentially whistler waves. The bottom in-set in Fig. 1 
shows reconnection at electron scales, with a magnetic field structure consisting of 
quadrupoles [17]. A new feature of the reconnection at this scale is the nested structure 
of the quadrupole field, which was observed earlier by Cluster spacecraft [18]. The 
forthcoming NASA Magnetospheric Multiscale Mission (MMS) is designed to resolve 
the electron scale processes and will provide data with shortest scale resolution of a 
few electron electron depths. The EMHD model has the advantage of its simplicity 
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and the code can resolve the finest scale (electron skin depth) processes, and predict 
the microscale features of the current sheet. 

FIGURE 1. The magnetosphere exhibits multiscale behavior ranging from the electron skin depth to 
the global scale during active periods of magnetic storms and substorms. The global MHD [11], Hall-
MHD [13] and electron-MHD [17] codes provide the simulations of the multiscale phenomena.

The multiscale nature of the magnetosphere illustrated in Fig. 1 uses three 
different types of codes, viz. MHD, Hall-MHD and E-MHD, to highlight the range of 
scales of the physical phenomena. However, the cross-scale coupling among them is 
absent in these results from separate codes. A comprehensive simulation that includes 
all scales simultaneously and  their cross-scale coupling requires a two-fluid code in 
which the dynamics of the electron and ion fluids are fully retained. Such two-fluid 
codes require time steps that resolve the electron dynamics and stable performance 
over many ion fluid time scales. This requires extensive computational power and 
sophisticated numerical algorithms. It should be noted that the present two-fluid codes 
use time steps that resolve the ion fluid dynamics which are too long to resolve the 
elctron scale processes, such as the features shown by the EMHD model. Alternatives 
to such fluid codes for the study of multiscale phenomena are the particle-in-cell, 
Vlasov and hybrid codes, but at present the capability to simulate the electron and ion
scales simultaneously by such codes is limited.

The monitoring of the coupled solar wind – magnetosphere system using
ground-based and space-borne instruments for more than 50 years have provided 

38
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.2.129.155 On: Tue, 11 Feb 2014 19:56:47



extensive data suitable for studies of multiscale phenomena. These data are widely 
used in the study of the plasma processes in geospace and more recently in the data-
driven modeling based on dynamical systems theory [3, 19]. Along with the new 
understanding of geospace phenomena the data-driven studies are early efforts in data-
enabled science [6].

DATA-ENABLED SCIENCE AND COMPLEX SYSTEMS

The recent explosion in data has led to the recognition of the potential for 
scientific advance, and in the same time, to challenges in data management and 
scientific inference from large volumes of data. Data-enabled science addresses the 
latter and uses the science to provide the insight that leads to new advances. This is 
distinct from the practice of data exploration and understanding. An example of this 
approach is the data-enabled modeling that yields the dynamical and statistical 
features of many natural systems, without the assumption of specific physical 
processes.  

Most extended systems in nature are described by a large number of variables, 
while only a small number of these may be monitored for long durations. In such 
systems, the inherent nonlinearity along with the contraction of its phase space due to 
dissipation leads to low-dimensionality. The small number of variables describing the 
low-dimensional dynamics can be reconstructed from the time series data of a single 
variable, based on the embedding theorem [20, 21]. However, open systems exhibit 
significant levels of multiscale behavior or high dimensionality, thus limiting the 
scope of the low-dimensional or global dynamical models. The interplay between the 
global and multiscale behavior is described below in the case of the Earth’s 
magnetosphere. These studies require the use many techniques, such as phase space 
reconstruction [3, 4, 19, 22], mutual information functions [23, 24], and detrended 
fluctuation analysis [24, 25].

Modeling the Global Magnetospheric Dynamics

The recognition of the large scale coherence in the magnetosphere [2] provided
a key motivation for developing low dimensional models and there has been 
considerable progress in modeling the solar wind-magnetosphere coupling as an input-
output system by using techniques of nonlinear dynamics and complexity. The data-
derived models are based on the correlated database of the solar wind as the input and 
the magnetosphere as the output. The solar wind upstream of the Earth is monitored at 
the Lagrange point L1 by spacecraft such as ACE, and plasma and field are used to 
derive physical variables that couple effectively to the magnetosphere. Among such 
variables the solar wind induced electric field, given by the product of the flow 
velocity V and the magnetic field B, is widely used. The north-south component of the 
electric field, VBz, is the dominant variable that couples the solar wind to the 
magnetosphere through magnetic reconnection at the magnetopause, its boundary. The 
magnetospheric response to the solar wind driving is represented by the magnetic field 
variations monitored by ground-based magnetometers distributed around the globe. 
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These magnetic field variations are then used to derive geomagnetic indices, such as 
the auroral electrojet index AL and storm time index Dst, and represent more 
convenient representations of the magnetospheric dynamics. 

The studies using time series data use the phase space reconstruction technique 
and have shown that the coherent behavior of the magnetosphere during the storms 
and substorms can be described by low-dimensional models [3, 4, 19, 22].  Further 
developments in the data-driven modeling have led to a mean field technique of 
averaging outputs corresponding to similar states of the system in the reconstructed 
state space [26-28]. The improved models are now used for near real time space 
weather forecasting. The predictability of the magnetosphere demonstrated by using 
the data-derived modeling has two implications. First, it shows the global coherence of 
the magnetosphere in terms of the low-dimensionality of the system [3]. This feature 
is consistent with the global picture obtained from the theory, modeling, observations, 
and global MHD simulations. Second, the predictive ability of the data-derived models 
provide reliable tools for space weather forecasting.

The data-derived low-dimensional model has been used to interprete the 
magnetospheric dynamics in terms of phase transition-like behavior [29]. The data of 
the three leading variables of the model can be obtained by projecting the correlated
data of the solar wind – magnetosphere system along the leading directions obtained 
by a singular spectrum analysis [4]. Fig. 2 shows the three variables which correspond 
to the solar wind input Pi, the magnetospheric response Po (the color of the manifold) 
and the third variable P3 representing the time variability of the response. The two-
level structure of the manifold on which the dynamics evolves is interpreted as phase 
transition-like behavior [29], viz. a transition from the higher state (red) to the lower 
state (green).

FIGURE 2. The global dynamics of the Earth’s magnetosphere obtained from observational data  (left 
panel) [29]  and simulations using a global MHD code (right panel) [30]. The two-level structure, with 
the red/yellow at a higher level than the green/blue, shows a phase transition-like behavior of 
magnetospheric transitions.
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The global MHD simulations provide the large scale features of the 
magnetosphere and the dynamical features from the simulations have been used to 
compare with the data-driven model. For this purpose, the global MHD simulations 
were carried out for the solar wind conditions used in the data-driven modeling. Since 
the latter uses extensive data of many substorms this required extensive runs on 
supercomputers. The simulation data was then used to compute the equivalent of the 
auroral electrojet index AL and the three leading variables obtained in the same 
manner as the observational data [30]. A plot of the three variables is shown in the 
right panel of Fig. 2. The two results, one from observational data and the other from 
simulations, yield similar dynamical manifolds and both show phase transition-like 
behavior. It should be noted that the simulations require extensive resources, more
than 300 hours on supercomputers, and yields similar results as the simple dynamical 
model derived from data, which run on a typical workstation.

EXTREME EVENTS AND MULTISCALE PHENOMENA

The multiscale nature of nonequilibrium systems is intimately connected to 
extreme events, which are the largest scale events. The statistical feature of such 
events in the context of the total distribution is illustrated in Fig. 3 by comparing two 
types of distributions. The Gaussian distribution includes a negligible number of 
extreme events compared to the distribution described by a heavy tail with a scaling 
exponent. Such probability distribution functions (pdf) are common in many natural 
systems, e. g., earthquakes, floods, river runoffs, geospace storms, etc. The data on the 
extreme events are usually limited and the nature of their distribution is not known 
with high accuracy. However, if the exponent of the power law dependence can be 
computed from the available data it provides a key parameter. With this exponent the 
likelihood of extreme events can be estimated, assuming a validity of the scaling, and 
this yields a predictive capability.

The scaling properties of the probability density functions have been studied 
for many systems in order to characterize extreme events. For example, the studies of 
the floods of Nile river using the R/S analysis [31] led to the well-known Hurst 
exponent [32, 33] and is now widely used in characterizing nonequilibrium 
phenomena. The scaling exponent reflects the presence of correlations and in the 
presence of non-stationarity and periodicity, such as intermittency exhibited by many 
systems [34, 35]. Detrending of the data [36-38] is a widely used technique in the 
computation of the scaling exponents from time series data.

The large database of the auroral electrojet index AL provides a suitable data 
set for the studies of long-range correlations in the magnetosphere and thus for 
characterizing the extreme events in space weather. In order to analyze the correlations 
in AL data sets with 1-hr and 5-min averages were used [24]. The hourly averaged AL 
for the period 1978-1988, which covers a typical 11-year solar cycle and 5 min 
averaged data for 1978 were used to compare the scaling properties. 
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FIGURE 3. Heavy-tailed (power-law) distribution of frequency vs. event size (blue), compared to the 
light-tailed (Gaussian) case (red). The likelihood for extreme events is much larger for the heavy tailed
case. 

The detrended fluctuation analysis of time series data is accomplished in four 
steps [24, 36-38]. The first step computes the profile of the time series data xi data as:

�(�) = �(��
�

��	

 < x >)

The subtraction of the global mean <x> of the dataset however is not essential as the 
third step, described below, usually removes this and other trends. In the second step,
the profile Y(i) is divided into NL = N/L non-overlapping segments of length L. In 
order to avoid a loss of data in the case N is not a multiple of L, the same process is 
repeated starting from the other end of the data set, yielding 2 NL segments. The third 
step is where the trends in the data are removed by defining a local trend qj(i) for each 
segment j by a fitting procedure, e.g., a least-squares fit. The detrended time series for 
the segment duration L is then defined as:

��(�) = �(�) 
 �
(�)
In most cases the local trend is usually represented by a polynomial and a quadratic 
function is used. In the fourth step, the variance of each segment YL(i) is computed:

���(�) = < ���(�) > =  1
� � ���

�

��	
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This leads to the detrended fluctuation function F(L), which is defined by 

��(�) =  1
� � ���

���

��	
In the presence of long-range correlations, the fluctuation function scales as

�(�) � ��
For uncorrelated or short-range correlated data, the exponent � = 0.5 and larger values 
show the presence of long-range correlations.

The detrended fluctuation analysis of the 5-min averaged AL data yields a 
scaling function F(L) shown in Fig. 4 [24]. Also shown in this figure is the function 
using the fluctuation analysis (FA) [36]. The DFA function F(L) yields an exponent �
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0.9, thus showing long-range correlations. The hourly averaged data covering 11 
years yields an exponent of 0.87, and thus the two data sets exhibit similar scaling.  

FIGURE 4. Detrended fluctuation analysis of 5-min averaged data of AL for 1978. The function F(L) 
has a scaling exponent of 0.9 and shows the presence of long-range correlations. The case of Gaussian 
distributed (random) has an exponent of 0.5. 

The scaling exponent � provides a means for estimating the likelihood of 
extreme events and is widely used in forecasting, e. g., earthquakes, river run-offs,  
and finance [35]. It also provides an insight into the inherent nature of the system. For 
example, �=0.5 implies randomness and forecasts in such cases are not meaningful. 
On the other hand, �����������!"��#$%-&'$%!�*#&&!�',�#$"�'$.�,/0"�,/!�"2",!��/'"�
�&!.�*,'3�!�3!/'4�#&5

CONCLUSION

The emerging data-enabled science is based on effective use extensive 
observational data to yield dynamical and statistical properties. Complexity science, 
which yields data-driven models with predictive capability in cases where the first 
principle models are not available, provides such a framework. The Earth’s 
magnetosphere is an example of a large scale open system in nature and the studies of 
its properties with data-enabled modeling have provided highlights of the new 
approach to understanding complexity.

An important advantage of data-enabled modeling is the capability to provide 
insights into extreme events and their predictability. Extreme events are an emergent 
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property of many complex, non-linear systems in which various interdependent 
components and their interaction lead to a competition between organized and 
irregular behavior. The devastating consequences of extreme events in natural, social 
and financial systems are well-known, viz. natural hazards and economic downturn. 
Considering the complexity of these nonequilibrium systems, it is not clear at present 
whether predictive models based on first principles can be developed. On the other 
hand, the data-driven approach has the potential of providing models with improved 
predictability. Many natural hazards and similar phenomena have a heavy-tailed 
distribution of magnitudes, such as a Pareto or lognormal, and characterizing them is 
an important step in improving the forecasting skill. In the damages due to natural 
hazards, about 80% of losses arising from claims come from ~20% of events (“the 80-
20 rule”) [39], thus underscoring the importance of targeting improved forecasts of 
extreme events.

The recent explosion of data from observations and simulations requires
development of data-enabled approaches. From modeling dynamical behavior to
characterization of key features, many requirements of ‘Big Data’ are beyond the 
current techniques and approaches [6, 7]. The complexity science provides an 
attractive perspective for developing ways to make effective use of large volumes of 
data.

Although the data-enabled modeling has emerged recently, there have been 
attempts at the use of data-driven techniques as a fundamental approach. Information 
theory [40], which has advanced our understanding of a variety of systems and is the 
backbone of many technological systems, is essentially a data-driven approach. In 
physics the earliest approach to a general theory of nonequilibrium statistical 
mechanics is based on information theory [41] and this framework can be used for 
implementing data-enabled science. Such approaches, however, have been the target 
of criticism, on the premise that modeling be based on first principles alone. With the 
advances of complexity science in physical, biological and social sciences there is 
growing recognition that modeling complexity requires going beyond the dependence 
on fundamental laws that are true for all times and all places [42]. Insights achieved in 
a complex system, using a consistent framework, can be used to understand similar 
systems, even in the absence of the fundamental laws.
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