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A detailed theory in conjunction with the results of computer simulation experiments is presented for
the beam cyclotron instability. The main results are (1) After a period of exponential quasilinear develop-
ment, turbulent wave-particle interactions cause cross-field diffusion of the electrons which smears out
the electron gyroresonances. This occurs at a level of turbulence which scales as Zi(| Ex |2/4xNoT,) ~
(Q/we)*(Q,/kv,) , where ©, and w, are the electron cyclotron and plasma frequencies, and results in a transi-
tion to ordinary ion sound modes that would occur in an unmagnetized plasma. The magnetic field serves
to reduce the effects of electron trapping. (2) This level of turbulence appears to have virtually no effect
on long wavelength fluid modes. (3) At this level the instability stabilizes if ordinary ion sound is stable
due to ion Landau damping. For cold ions it continues to develop at the slower ion acoustic growth rate
until the fields become strong enough to trap the ions. After the fields saturate, further plasma heating

is much slower than exponential.

1. INTRODUCTION

Recently, there has been considerable interest in the
theory of electrostatic plasma instabilities that are
driven by the relative streaming of electrons and ions
across a magnetic field. These studies have been
motivated in part by the need to determine the mech-
anisms responsible for turbulent heating seen in cross-
field magnetosonic shock waves (most recently reported
in Ref. 11 for T, <7T'; and in Ref. 12 for T,>T) and in
theta-pinch experiments.”® The nonzero value of curl B
in shock fronts and magnetic pistons indicates the
presence of a cross-field current, which may be driven
by the E xB drift or by drifts due to gradients in
density, temperature, or magnetic field.

The first such instability to be studied was the
Buneman two-stream instability,! which occurs when
74> v. and kr,< 1, and which quickly heats the electrons
to v,~vs. [Here, 15 is the electron-ion relative drift
speed, v,=(T,/m.)"? is the electron thermal speed,
re=1,/Q, is the typical electron gyroradius, and @, is
the electron cyclotron frequency.] However, Sagdeev?
pointed out the importance of slower instabilities which
continue to heat the plasma when v, <v.. Subsequently,
Krall and Book? discussed a class of low-frequency ion
acoustic instabilities driven by density and magnetic
field gradients, with w<, in the electron frame.

This paper presents a comprehensive linear and non-
linear theory (supported by computer simulation) of
a class of faster-growing high-frequency instabilities
with kr,>1 which we shall call the beam cyclotron
instability. These instabilities are due to the coupling
of electron Bernstein modes to ion beam modes, and
are driven principally by the E x B drifts.” The linear
theory of the beam cyclotron instability has been dis-
cussed by Wong,* Gary and Sanderson, Lashmore-
Davies,® Forslund, ef al.,” and Lampe, ef alf The fact
that the instability persists when ion temperature 7
exceeds T, was first pointed out in Ref. 6, and the
existence of the instability was confirmed by computer
experiments in Ref. 7. The first theory of the nonlinear
development of this instability has recently been pre-

sented in a preliminary letter by the present authors®
which also reports computer simulations in excellent
agreement with the theory. In this paper we present a
summary, including important new results, of linear
theory, and we discuss the mechanisms governing non-
linear development in full detail, i.e., quasilinear dif-
fusion, turbulent broadening of the electron gyroreso-
nances, and ion trapping.

In Sec. ITA we discuss the consequences of the linear
dispersion relation. It is assumed that the time scale
of interest is long compared with 2,7 but short com-
pared with the ion gyroperiod @7, so that the ions
are unmagnetized, and the model of a homogeneous
system with an electron-ion relative drift is adopted.
The instability occurs in discrete bands of wavenumber
or frequency, each band associated with a particular
electron cyclotron harmonic. For the case of cold ions
and for v4/v, small, the maximum growth rate occurs
for k~1/V2\p and is of order (m./m:)V*(Qew.va/v.)12,
as first shown in Ref. 4, where Ap is the electron Debye
length, m,./m; is the electron-ion mass ratio, and w. is
the electron plasma frequency. The location and width
of the unstable bands is given, as is the dependence of
w on k. A very useful simplified dispersion relation is
derived under the weak assumption kr.>1; in this
form, the usual infinite sum of Bessel functions is
replaced by a closed expression.

A theorem of general interest in linear theory, first
presented as a conjecture in Ref. 8, is proven. The
theorem states that under certain conditions (in par-
ticular, for the beam cyclotron instability, that T:=0),
fdk vx with the integral taken over the unstable modes
only is independent of the magnetic field. This is
indicative of the fact that the introduction of the
external magnetic field into linear theory distorts the
existing jon-acoustic instability, quantizing it into dis-
crete bands, but without mixing the unstable branch
with any damped branch of the dispersion relation.
In either of the two limits, B—0 or vZ>v,, the bands
coalesce and the instability spectrum becomes con-
tinuous.
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In Sec. IIB we argue, following Dum and Dupree,
that in the presence of turbulent electric fields resulting
from the instability, an electron no longer has a well-
defined gyro-orbit—there is now a component of cross-
field spatial diffusion. When the diffusion coefficient D,
which is proportional to the field energy (E?), is calcu-
lated, and is fed back into the zero-order electron
orbits, a dispersion relation nonlinear in the wave
amplitudes is obtained. In fact, this nonlinear dispersion
relation is of the same form as the linear dispersion
relation discussed in Sec. IIA, except that the electron
gyroresonances are broadened by a frequency Awp=
kD, i.e., by the inverse of the time necessary for an
electron to diffuse a distance of the order of the wave-
length. When Aw&Q./m, diffusion becomes unimpor-
tant and linear theory prevails. But when the turbulent
fields are so strong that Awi 2./, the electrons are
essentially untied from the field lines over distances
and times characteristic of the beam-cyclotron insta-
bility, and the magnetic field is easily seen to drop out
of the dispersion relation. What remains is the disper-
sion relation appropriate to the ion acoustic instability
in a magnetic-field-free plasma. Thus, at a certain level
of turbulence, a transition is made from the beam-
cyclotron instability to the ion acoustic instability.
However, the magnetic field plays the important role
of preventing long time electron trapping in the usual
sense. This level scales as >« | B |2/47NoT o~ (Qe/we) 2 X
(1/kr.), where N, is the electron number density. If
Q./w.K1, as is true in many shock experiments,'!:?? this
transition occurs at a very low level of turbulence.

In Sec. II1 we discuss the quasilinear development of
the electron and ion temperatures. There are two dis-
tinct stages of quasilinear development: the beam
cyclotron instability, for low levels of turbulence, and
later the ion acoustic instability. We find that if 7:<T,,
in both stages the energy extracted from the streaming
motion is partitioned so that the electrostatic energy,
ion temperature, and electron temperature all grow
exponentially, with growth rates in the ratio 5:3:2.
However, the coefficients are such that most of the
energy goes into electron heating, and very little into
the fields. The difference between the two stages is only
that the growth rate is considerably faster for the beam-
cyclotron than for the ion acoustic instability.

When the waves become big enough to trap ions, in
our computer experiments we find that the instability
saturates. By using the condition 2e¢=3im;(v,—~w/k)?
for ion trapping,’® and also using the quasilinear equa-
tion for T, we estimate that the electron temperature
at saturation is T'¢~0.02m.v.>. Following ion trapping,
continued plasma heating is observed. This heating is
linear rather than exponential, however.

For the case of warm ions, on the other hand, it is
important to note that ion acoustic waves may be
stable, as a result of ion Landau damping, although
beam-cyclotron modes are unstable. A rough criterion
for ion sound stability, valid for a hydrogen plasma
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in the range 0.1 S(T+/ T, va/ve) S1, is Ti/Te>va/ve. If
T./T. exceeds this requirement, the transition from
beam-cyclotron to ion acoustic waves results in stabil-
ization. As observed, this nonlinear stabilization can
occur at a rather eatly stage, for conditions prevailing
in many shock experiments.

To summarize then, one important result of Secs. II
and III is that the instability can be stabilized in any
of three different ways: (1) Linearly. The growth rate
decreases for £>2-V2\p~1, The minimum unstable value
of £ (corresponding to the fundamental frequency )
is Q. /va. Thus, if (v./v4) > 2712w,/ the growth rate
decreases as the electrons heat further, growth is no
longer exponential, and rapid heating ceases. (2) Reso-
nance broadening. If T';/T, is too large, roughly if
T:/T.=vs/v., the transition to ion acoustic waves, as
a result of turbulent diffusion, kills the instability.
(3) Ton trapping. Whichever of these conditions occurs
first, depending on the particular experimental param-
eters, will terminate the instability.

In Sec. IV we observe that in some systems the beam
cyclotron instability can exist simultaneously with
other instabilities. For example, Papadopoulos, et al.’®
have discussed a two-stream instability of cross-field
counterstreaming ion beams, with long wavelength,
kre~(m,/m;)"?><<1, which occurs only because the
electrons are tied down to the field lines. The question
then arises, will the turbulent diffusion resulting from
the beam cyclotron instability stabilize such long-
wavelength instabilities by untieing the electrons from
the field lines? We find that this cannot happen. Elec-
tron diffusion over distances as long as the ion-ion
wavelength would require turbulent electric fields far
larger than those generated by the beam cyclotron
instability.

In Sec. V, we present results of extensive numerical
experiments, confirming all the main points of the
theory. Much of the nonlinear theory of the instability
presented in this paper was motivated by the initial
computer experiments.

Section VI contains a summary of the results, and
their implications for perpendicular shock waves.

II. DISPERSION RELATION

A. Linear Theory

We consider electrostatic waves driven unstable by
the relative streaming of electrons and ions across a
uniform magnetic field B. The linear dispersion relation
can immediately be written as

e(k, w) =14ui(k, w) +p.(k, w) =0, (1)

where u. and u; are the susceptibilities contributed by
the electrons and ions, respectively. In this paper we
shall confine our attention to situations where the ions
are unaffected by the magnetic field, i.e., the time scale
of all processes both linear and nonlinear is much
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F16. 1. Growth rate vs wavenumber for a hydrogen plasma
with z;d/'u,= 1, T:/T.=0 for the cases Q./w.=0.1, % =0 (smooth
curve).

shorter than an ion gyroperiod. Within this limitation,
in a reference frame in which the ions drift with velocity
vz with respect to the electrons, p. and u, are given by

pi=— (20) T/ T:) Z'[ (w—Kk-va) V2kv], (2)
we? © w kv afe
=2 [ mol1_ 2 -
fe k? /dv[l n;_w w—nﬂ.,]n (Qe )] o 161}1’
(3)

where k=| k |, v.=| v— (v-B) (B/B?) | is the velocity
normal to B, 9;=(T:/m;)V? is the ion thermal speed,
fe s the electron velocity distribution, and Z’ is the
derivative of the plasma dispersion function.

We shall, for the most part, be interested in the short-
wavelength region of the unstable wave spectrum, i.e.,
kre>1. In this limit it is possible to sum all the har-
monics appearing in .. Following the procedure detailed
by Coppi, ef al.,”” which is summarized in Appendix A,
we obtain the following expression for u,:

—( B2\ ,2)—1 2 2\-1__® L)z
e (k }\D) +(k)‘D) Zﬁk'{)g{z<\/§kve> Z( \/jk'l‘g)

wienleg oG- o

Notice that in this version of u. the magnetic field
appears only in the cotangent term, which will be of
great use later in displaying certain properties of this
dispersion relation. The dispersion relation with g, in
the form given by (4) is especially suited to numerical
computation, and we have evaluated the growth rate
v and the real frequency wy, for a wide range of plasma
parameters. Figure 1 furnishes an example for a hydro-
gen plasma with w./Q.=10, v3/v.=1, and T:/T.=0.

In order to understand the nature of the computer
solutions, we now consider a particular limit® that is
physically significant and yields simple expressions for
we and vy, In this limit, which is characterized by
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T:&T, and
w/VZhv A2y, /<L, (5)
we obtain?®
1+k2)\02’“ [k2632/ (w— k'l)d) 2]
= (37) "2 (w/ kv.) cot[m(w/Q)], (6)

where c,= (To/m;)'? is the ion sound speed. Writing
wi = 1€2+8; and assuming

i, 0 K Q/ T, f nQ.— kvg |, (N

it is easy to show that
wi— kva~— ke, (14 k2Ap?) ~12—§, (8a)
vid= (me/8rm:) Q2 (14-k2\p?) 2 —52  (8b)

Wong treated this special case in the limit 8 =0. From
Eq. (8a) it is evident that the modes have essentially
the phase velocity of ion sound when viewed from the
ion frame. The cotangent term on the right-hand side
of the dispersion relation (6) serves to generate the
Bernstein modes near #Q,. Hence, in the electron
reference frame we may regard the Bernstein modes
as coupled to ion sound and driven unstable by the
“ion beam.” Notice however that for ZAp<<1 the group
velocity is one-half the phase velocity, whereas in the
absence of the magnetic field both of these velocities
are equal.

Equations (8) show that the unstable modes occur
in discrete bands in k space. These bands are centered
on the cyclotron harmonics, wp=nQ., &=/ [va—c,/
(14-k2\p?) 2] and have bandwidths given by

Swr~2y;, (8,=0) (9a)
and

dh~28w/v,. (9b)

The restriction of the unstable modes to narrow bands
must be taken into account in computer simulations of
this instability where only a limited number of discrete
modes are available to the system. Equation (9b) has
been simplified by assuming 2.3>¢,; in the opposite case
13< ¢,y Egs. (82) and (8b) are still valid but the growth
rates are feeble. Assumption (7) requires that

Do/ 0> [Qe/ (87) V2wi JL1/EAp{(14-E3Np?) V2],

where w; is the ion plasma frequency.
The fastest growing instability band is the one that
falls closest to

(10)

koE 1/ (\/?)\D) y
which corresponds to the harmonic number nearest to
#0=2"1%(va/ve) (we/Qe) - (11b)

For k> kg, the growth rate falls off as &~'. Thus rapid
heating as a result of this instability can occur only if
ne> 1. This establishes an upper bound on v, and also
indicates that if ».>v (the situation of interest), then
we/Q must be greater than unity.

(11a)
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Numerical solutions of the dispersion relation using
expression (4) for u, agree very well with the solutions
(8a) and (8b) provided the limitations (5) and (10)
are observed. For v;/v, too large to satisfy (5) and (10),
numerical solutions with 7';=0 show that the growth
rate maxima become larger than those predicted by
(8b). When the inequality (10) fails badly, the unstable
bands are somewhat widened and shifted away from
the cyclotron harmonics toward higher frequencies. In
the limit opposite to (10), the nth instability band
begins at w just below #Q, and % just above 7€./v,.
When 4/, 23, for a hydrogen plasma, the bands over-
lap and the unstable spectrum approaches the smooth
curve of the usual two-stream instability. In the limit
B—0 and Q.<1vi, the magnetic field disappears from
(4) because cotw/Q——1 and the instability goes over
continuously to the field free situation. This indicates
that the magnetic field does not create a totally new
instability but rather quantizes the unstable spectrum
into discrete bands. The maximum growth rates can be
enhanced several times over their B=0 values but the
unstable region of £ space becomes correspondingly
reduced (see Fig. 1), so as to conserve the area under
the v,—% curve. Indeed we can prove a remarkable
theorem to this effect.

Theorem: If Ti=0, the quantity

= / dk i,

where the integral is taken over the unstable modes only
(i.e., vx>0) is independent of the magnetic field.

The proof of this theorem follows from expressing O
in the form

0= / 27er f e(k w)a e(k «), (12)

where C is the contour (shown in Fig. 2) enclosing all
roots of the exact dispersion relation e(k, w)=0 with
Imw>0. The semicircle at infinity does not contribute
since (w/€}(d¢/0w)~w? as |w|—>w. The order of
integration is now reversed giving

uo+l5d ®
0= Im[ @ /—ka—‘.

wotis 21rz —w € 0w

/“” dk de

o € Jw

is an analytic function of  in the upper half plane,
then the w contour can be moved to i, As Imw— o,
(1/€)3¢/dw becomes independent of B. Thus, Q is
independent of B. The subtleties connected with the
legitimacy of the steps taken in the formal proof are

discussed in Appendix B. The proof is strictly valid
for T;=0.

(13)

If
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w plane

Fic. 2. Contour of integration corresponding to Eq. (B3).

Electromagnetic E ffects: In order to justify the assump-
tion of electrostatic modes, the calculation was repeated,
using the full set of Maxwell’s equations. The resulting
linear dispersion relation decouples into a purely electro-
magnetic mode and a mixed mode. In the limit ¢,
the electrostatic case, Eq. (1), is recovered from the
mixed mode. For the restrictions under which (8a) and
(8b) are valid, it can be shown that the most restrictive
conditions for neglecting the self-consistent magnetic
field (vaXc) are

Velg 8rmo\/? (w,)"" (FAp)®
=) (2) —2X— (14
2 (E) s
and
e3l2 1/2 » 1/4 . 1/2 k)\ 5/2
Ve Vg s (ﬁ) (_‘*’_) ( D) . (14b)
& m; Q.  (14+kNp?)3

If w,/Q 23, then (14b) is more restrictive than (14a)
for the important modes AA\p~2-12.

Case Te~T;: The linear theory for the case T',~T;
has been discussed earlier in Refs. 6 and 7. The main
result is that it is possible to have a resonant instability
corresponding to the beam-cyclotron instability in
situations where the usual ion acoustic instability for
B=0 would be stable. The numerical analysis of
Forslund ef ¢l.” shows that, in fact, linear growth rates
are relatively insensitive to 7'/ T, decreasing somewhat
in passing from the algebraic (7;/T«<<1) to the resonant
situation (T >T,).

This case is somewhat different in detail from the
case T:<KT.. For example, the most unstable wave has
w/k=1v4—v; rather than v3—c,, the instability bands
can widely overlap in % while remaining distinct in w,
and for kEAp>1, the growth rates decrease as (kAp)~,
rather than as (kAp)~.

B. Nonlinear Theory

When the wave amplitudes of the unstable spectrum
become large enough to perturb the electron orbits,
then the linear dispersion relation requires some modi-
fication. With reasonable justification one may assume
the wave spectrum to be randomly phased, so that the
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Fic. 3. Stability boundary as given by Stringer (Ref. 20)
fgr a hydrogen plasma. The region U is unstable, while the region
is stable.

random motion of the electrons in such fields can be
described in terms of a diffusion. This results in a
broadening of wave-particle resonances, as postulated
by Dupree!® which is dependent on the field amplitudes.
Thus, we may write

it a1 § )] 8
oo W— W+ 1AWy 0v.
(15)

where Awp=k?D is the resonance-broadening term, D
being the cross-field spatial diffusion coefficient. A
theory for Aw; has been developed by Dum and Dupree!
for an isotropic wave spectrum. We adopt their expres-
sion for Aw: but modify it to a one-dimensional wave
spectrum. Specifically, since the diffusion of electron
guiding centers is normal to k, the first term on the
right-hand side of Eq. (56) of Ref. 14 vanishes. The
remaining terms arise from velocity diffusion, which
is proportional to a random component of the gyro-
radius and azimuthal position. Thus we obtain

1 iz_ K S E [J,,+, (k “)—1—],._1 (k m)]

Awp=
2932 ¥ =n 96

v Awpr+yre
(wk' ""nﬂe) 2+ (Awk'+'Yk')2 )

(16)

We now assume that the electrons retain their Maxwell-
ian distribution during the development of the insta-
bility. This is justified by numerous computer experi-
ments to be described in Sec. V. Then, following the
procedure used in obtaining (4), and approximating
Awi(ve) by (Aw:)=[ d% f.Awr(v1) in (15), we obtain
the nonlinear version of (4):

pNl= (R*Ap?) !+ (BNp?) ~H(w/ 2V2kv.) (Z(§) —Z (=)
+i cot{n[ (wti{Awe)) /2N [Z () +2Z(=5) D), (17)
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where {= (w+1i(Aw)) /V2kv,. In a similar manner it is
possible to sum the harmonics in the expression for Aw
and we obtain,

(Aw) 1“’9 bu._ | Ev|? k
Q. =(82) QHZ,%%NOT 4
X Im[G(¢)+G($-)], (18a)
where

G(§) =Z($1) —Z(—$4) +i cot{n[ (w+i(Awe)) /2.]}
X[ZEe)+Z(—Fx)] (18b)

and

o= (w0t Dti(Aawn)) VIR D,. (19)

The quantity u~N" depends on Q, directly through the
cotangent, and indirectly through Aw, [Eq. (18)]
which occurs both in the cotangent and in {. If {(Aws)/
V2kyv, is small, and can be neglected in {, then pNU
depends on B only through the cotangent. A case where
(Awy)/V2ky, is not negligible in ¢, will be noted in
Sec. V. Retaining this term serves to reduce the growth
rate.

The linear theory developed in the previous section
is recovered in the limit 7 {Aw;)/Q<K1 and {(Awi) Sk
For Q./7>>{Awi) 2vk, the growth rates are reduced
somewhat from their linear values. In this case, and
for T:+<XT,, Eq. (8a) is virtually unaltered, but (8b)
now reads

(me/8wm;) V2nQ2(14kp?) —3/2
X1+ (Do) /ve) =&t

’Yk+ (Awk))2
(20)

Strong Turbulence: At a level of turbulence such that
{Awy)/Qe 21/, the cotangent term in (17) is approx-
imately —¢ and we arrive at the important result that
the nonlinear dispersion relation goes over to the linear
dispersion relation in the absence of a magnetic field.
For | w/V2kv, |< 1, this transition is to the ion acoustic
instability, which is unstable only in the region shown
graphically in Fig. 3% (for a hydrogen plasma). We
note that, in the regime 0.1 <(7/ T, v4/v.) $1, a rough
criterion for the existence of an instability is 7's/T.<
Va/Ve.

For the case of cold ions, the solution to the dispersion
relation in this regime is given by

wi— kvt— ke, (14 FAhp?) 7112,

vix[3r (mo/m:) ]2koa (14 k2Np?) %2,

(21)
(22)
The critical amplitude of the turbulent fields for this
transition is obtained by setting (Aw:)/Q.=1/w. From
the expression (18) for < Awy) we obtain, after replacing
the cotangent by —¢ wherever it appears,
| Ev |2 K (2)3/292 Q.
k! 41rNoTe k’ - g [GF Ieve

(23)
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At this amplitude it may be argued that most of the
electrons would get trapped and hence stabilize the
system. However, longtime trapping in a large ampli-
tude coherent wave, in the usual sense, is ruled out by
the presence of even a weak magnetic field which serves
to untrap the electrons.

In their treatment of the saturation of high-frequency
ion cyclotron flute modes of a mirror confined plasma,
Dum and Sudan? arrived at a similar expression for
the critical fields for ion gyroresonance broadening. The
ion cyclotron modes actually stabilize at these critical
fields but in the case of electron-cyclotron modes such
a stabilization only takes place if T:/T, is too large for
an ordinary ion acoustic instability. In the opposite
situation the waves still continue to grow but at the
reduced growth rate given by (22). The ultimate
saturation of these modes is discussed in Sec. III.

The transition to a nonmagnetic instability occurs
more readily for higher harmonics. When T:~T,, all
harmonics with £\p $1, kv./Q>>1 have about the same
growth rate; thus, the appropriate value of & to use in
the transition condition (23) is Amin=Q/va. For a
peaked spectrum, which is the case when T,.2>T', the
appropriate value of % is that corresponding to the
fastest growing modes, which contribute most, i.e.,
k~ApI~E.

It is well to note that in many perpendicular shock
experiments!! where Q,/w,<&1, T'i/T. is too large for an
ordinary ion acoustic instability. Thus, if the ion dis-
tribution in these experiments is Maxwellian, they fall
in the stable region of Fig. 3, and stabilization of the
initially unstable modes will occur at a low level of
turbulence. Thus, the main region of interest for the
beam cyclotron instability, assuming Maxwellian ions,
is for situations where T';<T,.

III. QUASILINEAR THEORY

We now go on to discuss the quasilinear evolution
of the plasma. Specifically, we derive rate equations
for v4, T., and T'; in terms of the fluctuating fields. The
field energy evolves according to

d
7 | Ex 2= 2vx(va, Te, Ts) | Ex |2, (24)

where we have indicated the explicit dependence of 4
on 74, T., and T:. vx may be given either by Eq. (8b)
or (22) depending on the stage of the instability. The
equations for v; and T'; can be obtained from the ion
quasilinear equation

of: 2 d af:

ofi _ TR lz__'y"______-t, (25)
at mi i 3 (we— ko) 2442 dv

where | E |[?=#? | &; |2 and the sums are over positive .
The frequency and growth rate are determined from
the dispersion relation discussed in the previous section.
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F16. 4. Cold ion beams counterstreaming normal to B through
Maxwellian electrons.

Taking appropriate moments of Eq. (25) and assuming
that T;/T <1, v4/v. $1 yields

dT; 2¢ k2,2 -1 4
— k2 2 — | P 2 26
@ mr (1+k2>\p2 +7") 2! % (29
and
d —2¢
Gt — 4 3 k4ca(1+k2)\Dz)—1/2
dt m; k
k2,2 -2 d
2) — | &5 (27
<1+k2)\92 +7“) AR
The electron quasilinear equation may be written as
af. e 0
— =Re} 2— —(Efi), 28
FRED LT N

where the summation is over positive 2 and where the
linear expression for fi. is used. Then an expression for
the change of electron temperature is
aT.
dt

= zk:/d3vem2 %'(E—kfke)

=Y /d"‘v 2ev+ (E_x fie)
= % 2<E—k'Jl¢e>) (29)

Jx. being the electron component of the total current
at wavenumber k. Rather than evaluating the right-
hand side of Eq. (29) directly, we invoke Poynting’s
theorem which states

d
<E._k 'a—t Ek>+41r (E——lb’k¢>+47r (E_k]ki> =0. (30)

The last term is simply 4 times the rate of change of
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TaBLE 1. Each column refers to a different numerical experiment. Rows 1-4 give basic experimental parameters. Rows 5-7 refer
to the beam cyclotron phase: harmonic number of the largest amplitude mode, measured growth rate, and maximum theoretical growth
rate. Rows 8 and 9 give the measured level of turbulence at the “knee”, and the theoretical value, Eq. (23). Rows 10 and 11 give the
measured growth rate in the acoustic phase and the maximum theoretical ion acoustic growth rate. Rows 12-14 give the measured
value of kyAp (k4 is the wavenumber of the trapping mode), and the measured and theoretical [Eq. (37) ] values of T./mz at the

onset of ion trapping.

Run number

1 2 3 4 5 6 7
(1) mi/m, 1 836 1 836 1 836 1 836 400 400 400
(2) Q/we 0.1 0.2 0.2 0.4 0.1 0.2 0.4
(3) System size 512 1024 512 512 512 512 512
(4) No. particles 140 000 140 000 100 000 140 000 140 000 100 000 140 000
(5) Harmonic No. beam-cyclotron 2 2 i 5 2 1
(6) YM, oyo/we instability 0.0056 0.0071 0.017 0.010 0.013 0.025
(7) Yin, oye/we not seen 0.015 0.016 0.022 0.020 0.026 0.036
(8) E*/4xNoT.|m not seen 0.012 0.017 0.06 0.002 0.011 0.07
to
0.004
(9) E*/4xNoT, | 0.0017 (in 0.007 0.010 0.07 0.0013 0.011 0.07
thermal noise)
(10) M, sound/we 0.0033 0.0017 0.0012 0.00074 0.0071 0.0056 0.0014
(11) vin, souna/ e 0.0025 0.0022 0.0022 0.0025 0.0096 0.0060 0.0054
(12) kerp not run to 1.1 0.88 1.3 0.78 0.72 1.3
saturation
(13) To/mip? m 0.008 0.012 0.0056 0.04 0.025 0.025
(14) T./map? | 0.005 0.010 0.0019 0.015 0.019 0.002

total ion energy, so that Eq. (30) simply states con-
servation of particle plus electrostatic energy density.
It is now clear that Awx can be interpreted as an
anomalous electron-electron collision frequency, since
it does not directly affect the rate equation for ion drift,
ion temperature, and electron temperature. Therefore,
there can be no anomalous heating or resistivity result-
ing directly from this Aw. Using Egs. (26), (27), and
(30), the quasilinear equation for electron temperature

is

dT, 14T d
e L e S 4aN) S B P (31
dt 3 g Mg, — X WrNoT D [ B (31)

Comparing terms in Eq. (31), we find that the con-
tribution m; v4 (dve/dt) is dominant as long as v&>c,.
Thus, most of the energy coupled out of the beam goes
to heating electrons and we may write

T.(8) — T (0)=3mi[v2(0) —v2(2) ]. (32)
Due to the large ion mass, a small change in beam
velocity gives a substantial change in electron tem-
perature. Using Eq. (27) for vs, we may immediately
write
2621}11‘1/2‘001

dT. d
= — 2 2y3/2 2
= o T (e 2 | &, 2. (33)

The system of equations (24), (26), (27), and (33)
form a coupled system for the mode energy, drift
velocity, and electron and ion temperature. In Appendix
C, we derive the rate equation for T, directly from
Eq. (28).

If all modes have ZAp<<1 and for times small enough
so that 7; does not change significantly, v; is independ-
ent of Ty, T,, and v, and it may be replaced with its
initial value. Hence, | E, |? increases exponentially with
time. For times such that T.>>7T.(0) and T:>>T:(0),
Eqgs. (33) and (26) yield

T. ()~ (Setmty ) | & ?)%5, (34)
3

Ti()E[TH2(t) /md?vg]. (35)
Thus, the electron temperature, ion temperature, and
the quantity 3« | Ex [2/k? all grow exponentially with
growth rates in the ratio 2:3:5. Note that the result is
independent of {Awi)/S,; it is only the magnitude of the
growth rate that depends on this parameter.

One other tractable quasilinear regime is that where
EAp>1 for all modes. This occurs in the beam cyclotron
phase if v,/v4>w./Q., since the minimum unstable value
of ki3 Q./v4. In this regime, vi~T ;3% so that the coupled
system no longer evolves exponentially. Combining
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Egs. (26), (33), and (24), we find that now

Tt), Tlt), T | Ba ottt (36)
k
so that the heating rate is drastically slower. Let us
remark that this regime cannot occur if (Awe) 2Qe/7
since there is no minimum % for the ion acoustic
instability.
ITon Trapping

After a period of quasilinear growth, the instability
is observed to stabilize in our numerical experiments.
We find experimentally, (see Sec. V) that the system
stabilizes once a significant portion of the ions (typically
3-49%) become trapped. At this point, the free energy
appears to dissipate by giving the ion distribution a
long tail, rather than by driving exponentially growing
electric fields. We will adopt the condition for the onset
of ion trapping,

rf,m,-['vd— (wo/ko) ]2R723®o (37)

as a phenomenological condition for saturation, where
ko is the wavenumber responsible for the trapping and
&, is the amplitude of the potential fluctuation.

In order to estimate the electron temperature at
saturation, we solve Egs. (33) and (37) simultaneously
for T.. In doing so, we make one simplifying assump-
tion, that the wave responsible for the trapping is the
fastest growing mode, so that kp=(1/V2) and
m;(va—wo/ko)?=2%T,.. Then, the solution for T, at
saturation is

T (1/50) mavg?. (38)
From Eq. (37) we see that e®,/Te~0.1. This gives
S | Ei [2/4wNoT ~0.01.

IV. INFLUENCE OF BEAM-CYCLOTRON
INSTABILITY ON MODES WITH k7, <1

In the situation shown in Fig. 4, i.e., counterstreaming
ion beams, and under the condition that

1a/va<2(1+48)1?

the beam-cyclotron instability coexists with a much
slower [vi~(m./m:)¥*Q.] and longer wavelength
(krs<1) ion-ion instability, whose theory was presented
recently.”® In the above, va=B/(4rNm:)? is the
Alfvén speed, and $=8xT,/B% Since an important
ingredient in the theory of this instability is the exist-
ence of magnetized electrons, the obvious question
arises, whether the turbulence resulting from the beam
cyclotron instability can untie the electrons from the
field lines to such an extent as to render the system of
Fig. 4 stable to ion-ion interaction. Physically, this
would occur when the mean-square deviation of the
electrons from their free orbits over the characteristic
time of the instability, is of the order of the instability
wavelength.
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F16. 5. Plots of electrostatic (2| Ex|2/4n), electron thermal
(NoT.), and ion thermal (3N,T;) energy densities, for run 3.
Energy units are arbitrary. The solid lines are drawn to emphasize
the exponential behavior during the quasilinear stages. Note
that electron heating is isotropic in two dimensions because of
the magnetic field, while ion heating is one-dimensional.

Using techniques similar to Sec. II, one can generalize
the dispersion relation derived in Ref. 16 to include the
effect of turbulent diffusion on the electrons. Assuming
that the ions are cold, unmagnetized, and unaffected
by the turbulent fields of the short wavelength insta-
bility the dispersion relation for propagation perpen-
dicular to the magnetic field becomes

3w/ (o—kva)*]+3[w?/ (0+kva)?]=14u] N, (39)
where uNU is given by Eq. (15).
Ii
vi> kD, (40)

where v: and %; are the growth rate and wavelength of
the ion-ion instability,’® then Eq. (39) reduces to the
usual dispersion relation'® in the absence of turbulent
diffusion. We can therefore conclude that if condition
(40) is fulfilled the short wavelength turbulence will
have no effect on the ion—ion instability. In the opposite
limit to (40), the diffusion term k2D will, under some
circumstances, lead to stabilization. This conclusion
will be valid independently of the source of the short-
wavelength turbulence, and might thus provide a
mechanism of stabilizing the ion-ion system by external
means.

However, in Sec. II we have seen that typically
Aoy=k?*D~A, for the case kAp~1. Substituting k: and
v: for the most unstable ion-ion mode, Eq. (40)
reduces to

(me/mi) 2 (Qe/we) (ve/va) K1,

a fairly weak condition. Thus the ion-ion instability is
unaffected by a level of short-wavelength turbulence
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Fic. 6. Ion phase space at time 2200 w,™%. L is the system length.
Note the vortex formation characteristic of trapping.

sufficient to eliminate B from the beam cyclotron
dispersion relation. This result was confirmed by a
simulation experiment to be discussed in the nextsection.

V. COMPUTER SIMULATION

Here, we summarize the results of nine computer
experiments designed to simulate the physical system
described in Sec. II. In particular, the computer code
is electrostatic, with a constant magnetic field that acts
on the electrons but not on the ions, in accordance with
the assumption made in Sec. II. These simulation
experiments confirm the main points of the theory
presented in this paper. The code is the same as that
used in Ref. 15; an earlier version (with no magnetic
field) is described in Ref. 22.

A. Cold Ions

Table I summarizes the results of the first seven
experiments.” Mass ratios of 400 and 1836 were used
and, in all' cases except one® 9=1v,(0), T.(0)=
1007;(0), the system size is 512 cells and Ap(0) =
4 cells. Care was taken to insure that a number of
unstable modes with 2Ap(0) <1 were present in each
run.

A typical graph (run 3) of field energy, electron and
ion temperature versus time is shown in Fig. 5. Initially,
the field energy, ion and electron temperatures all grow
exponentially with growth rates in the ratio 5.5:3:1.7.
This is in good agreement with the quasilinear predic-
tion 5:3:2. Notice the drastic slowing down of the
instability occurring at about w,#~800. This knee is a
persistent feature of all runs and marks the transition
from beam cyclotron to ion acoustic instability. After
the knee, the field energy, ion and electron tempera-
tures still grow exponentially with growth rates in the
ratio 3.6:3:2.1 which is in fair agreement with the
quasilinear theory. At w, #2200, the instability satu-

LAMPE ET AL.

rates. That this saturation coincides with the onset of
significant ion trapping is clearly indicated in computer
printouts of phase space (see Fig. 6). The vortices
shown account for about 49, of the ions. For a time of
1600cs,,7! after saturation, the total field energy remains
remarkably constant. During this time, the electron
temperature increases linearly. The heating rate
appears to be several times that expected from classical
collisions. At this time the heating mechanism is not
clearly understood and we are currently working on the
late time aspects of the problem.

The theoretically predicted maximum growth rate
for the beam cyclotron phase (row 7 of Table I) is in
all cases larger than the observed growth rate (row 6)
by a factor of about one to two. This is to be expected,
since (a) it is difficult to hit the fastest growing mode
since v, is sharply peaked, (b) other modes in the
system grow more slowly, (c) numerical collisions are
present, and (d) the presence of a (Awe)~%<Qe/m
can lower the growth rate by a factor which is typically
one to two [see Eq. (20)].

The theory of the transition from the beam cyclotron
instability to the ordinary ion acoustic instability is
well supported by the following “experimental” results.
First, the level of turbulence at the knee marking this
transition (see for example Fig, 5) agrees remarkably
well with theory in all runs, as shown in rows 8 and 9.
Second, the band structure of v, discussed in Sec. II is
clearly observed before the knee, while v, becomes a
smooth function of k after the knee.® Third, the experi-

L -‘\
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F16. 7. Plots of electrostatic (2| Ex|?/4x), electron thermal
(NoT.), and ion thermal (1/2N,7:) energy densities for the
case of warm ions. Energy units are arbitrary and the straight
line in the early stage is to emphasize the exponential develop-
ment of the fields.
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mental growth rate, which agreed with the beam
cyclotron growth rate before the knee, decreases mark-
edly at the knee and agrees well with the ion-acoustic
growth rate after the knee (vows 10 and 11) in all cases
except the two strong magnetic field runs. In these two
cases, Runs 4 and 7, the measured growth rate is
smaller than the theoretical maximum ion sound growth
rate by a factor of 3 to 4. This is partially accounted
for by noting that {Aws)/V2Zkv. K1 is less well satisfied
for these two runs, since {Aws) must be rather large to
smear out the electron gyroresonances. One finds that
in the acoustic phase of these runs, (Aw:)/V2kv, varies
from about 0.1 to 0.4. The effect of such values of
{Aw) is to reduce the acoustic growth by a factor up
to 1.5 to 2. Thus, the ion acoustic instability itself is
significantly affected by the effective collision frequency
{Awy).

B. Warm lons

Figure 7 is a plot of electrostatic field energy, electron
and ion temperatures versus time for the case T':(0) =
27.(0). In this run m./m,=400, ©,/Q,=7, the system
size=512 cells, 140 000 particles were used, v;=1,(0)
and Ap(0) =4 cells. Note the exponential increase in
field energy at early times. This corresponds to a meas-
ured growth rate 7vm,eye/we=0.006, compared to the
theoretical maximum growth rate i, oye/we=0.01 for
the beam cyclotron instability. At wt=~2500, the fields
saturate and the instability stabilizes. This occurs at a
measured turbulence level E%/47N,T.~0.009. We
attribute this stabilization to ion Landau damping at
the transition from the beam cyclotron to the ion
acoustic instability, since T/ T, is too large for unstable
ion sound. The theoretical value for stabilization by
this mechanism F?/4nN,T,~0.009 predicted by Eq.
(23), is in excellent agreement with experiment. At
stabilization the important modes have kAp well below
unity. Furthermore, no ion trapping is observed at
stabilization. Note that over a time 1600w.f, well beyond
saturation, the electron temperature has increased less
than a factor of 3 and the ion temperature less than a
factor of 1.5.

The level of the field energy fluctuates more after
stabilization than in the case of I':«T,. Also there is
some weaker long time heating which is not understood
at present.

C. Counterstreaming Ions

We now discuss the results of a simulation performed
with two equi-density jon beams counterstreaming
through a Maxwellian distribution of electrons at speeds
+vg. Initially, T:=10"2T, for both ion beams. The
purpose of this experiment was to test our conclusion
that a level of turbulence sufficient to eliminate the
effects of the magnetic field on the scale of waves with
kr.> 1, will not influence fluid modes (%7,<1) that may
be present. The choice of the two symmetrically counter-

CYCLOTRON
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Fia. 8. Plot of electrostatic energy in arbitrary units for the
case of counterstreaming ions illustrated in Fig. 3. Note the two
distinct phases of exponential development (emphasized by the
solid lines) corresponding to the beam cyclotron and ion~ion
instabilities, respectively

streaming ion beams was made to allow the ion—ion insta-
bility discussed in Ref. 16 to be simultaneously present
with the beam cyclotron instability. Since the fastest
growing ion—ion mode has yp=wy/2 and wavenumber
ko= (V3/2) (wo/vs), where wo= (wi/V2)(14w2/Q2)~12,
periodic boundary conditions (27x/k)9 =L yield

o= (L/4nva) (3me/2m:) [ Quwe/ (w0 2H+Q2) V7],

Here, 9T is the mode number, L is the system size in
cells, and 9%, is the mode number corresponding to the
fastest growing mode. Choosing parameters such that
o> 1 insures that the ion—ion instability will be present
and also that the shorter wavelengths of the beam
cyclotron instability will be present. Taking L=1024,
M (0) =1, 1,=2.(0), m:/m.= 400, w.,/Q=2, we see from
Eq. (41) that about three unstable ion-ion modes
should be present. With these parameters, the theo-
retical growth rate for the beam cyclotron instability
is approximately five times that for the ion-ion insta-
bility. In Fig. 8 we have plotted the observed electro-
static field energy as a function of time. At about
wi=100 the energy begins to increase exponentially
with measured growth rate ym,eyo/we20.02, compared
to the theoretical maximum growth rate vin,eye/we=
0.04 for the beam cyclotron instability. At about w.t=
250-300 the beam cyclotron instability stabilizes at a
level of turbulence | E |*/4wNoT.~0.08 which is just
below the level | E |2/4xN,T:~0.1 predicted by Eq.
(23) for the transition to the usual ion acoustic insta-
bility. At this point two nonlinear effects suppress the
ion acoustic instability: kninAp= (Qe/w.) (v./75)=21 and

(41)
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ION PHASE SPACE

T=900

Fre. 9. Ton phase space for the counterstreaming ion simula-
tion at time 900 w,™!. Note the clear evidence of the long wave-
length ion-ion instability.

also the fields are large enough to trap the ions. After
the saturation the total field energy remains relatively
steady while the unstable ion-ion modes grow. At about
w =700, these modes rise above the fluctuation level
of the saturated beam cyclotron instability and the
subsequent exponential increase in the total electro-
static energy is due to the ion—ion instability.

The measured growth rate vm 1-1/w:e~20.006 agrees
very well with the maximum theoretical growth rate
vih1-1/w.20.008. Computer printouts of ion phase
space plots clearly indicate the presence of a strong
ion—ion instability at these later times (see Fig. 9).
Furthermore, plots of mode amplitude versus % clearly
show that the short wavelengths of the beam cyclotron
instability dominate in the early stage, whereas the
long wavelengths of the ion-ion instability dominate
the later stage. Thus, we confirm the prediction that
a level of turbulence strong enough to smear out the
electron gyroresonances on modes kr.>1 will have
virtually no effect on fluid modes with %r.<<1.

VI. CONCLUSION

Our main conclusion from the analysis and computer
results presented here is that short wavelength A~Xp
electrostatic turbulence is insensitive to the presence
of a static magnetic field, after the early stages of
development, provided w?/Q? is a reasonably large
number. This is an important point to keep in mind
in the treatment of (i) turbulent heating experiments
involving current flow across magnetic field lines and
(ii) cross-field collisionless shock waves. In these situa-
tions the magnetic fields may be playing no role other
than preventing the electrons from being trapped in
the potential troughs of the waves, since it is clear that
an electron cannot be trapped in a wave indefinitely,

LAMPE ET 4L.

in the presence of a static magnetic field normal to the
wave.

Thus, we expect that the structure of the cross-field
shock wave in the experiments of Refs. 12 and 24,
where T.<K<T. is determined primarily by the properties
of ordinary ion acoustic instability. In the experiment
reported by Keilhacker and Steuer 7'y~T,, and the
beam cyclotron modes are linearly unstable. However,
the turbulence level necessary for the transition from
beam-cyclotron to ion-acoustic turbulence is quite low
since w./Q>>1, and, in fact, is much less than the
experimentally measured value. If the ions are Max-
wellian, then ion acoustic waves are stable for T';~T,,
but this is not necessarily true if a sizeable fraction
of the ion energy resides in a non-Maxwellian tail.
This matter is presently being investigated.

Finally, we have shown that the long wavelength
portion of the turbulent spectrum may be relatively
unaffected by the diffusion caused by short wavelengths
provided Awy=k2D<<yr where £ and v, pertain to the
long wavelength.
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APPENDIX A

In this appendix we outline the derivation of Eq. (4)
for u. following the procedure of Ref. 17. Using the
identity

=0,

¢ APACONEIO) (A1)

sinmy  v—a
where C is a circular contour with radius R—w, it
follows that
© J2(2)  wla(2)J-al(2)
2 = :

sinwo

(A2)

n=—aw0 X—N

Thus, Eq. (3), for a Maxwellian distribution of elec-
trons may be written as
@

o= (E2Ap?)~! [1__

1.2 sinwa

0 'U.L2
X / dvivadoJ s exp(— 2)] , (A3)
o VAR
where &=w/Q.. Using the following integral relations:
2 /2
Ta(8)T—a(z) = = f d0 cos(2a6)Jo(25 cosé)  (A4)
mJie

and

0 1 b2
/0 Jo(bl) exp(— )t dt= ﬁ;e)(p(— 4—’;) (A5)
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Eq. (A3) becomes

o x/2
Me=(k2)\p2)_l[1— .2w_ / de cos[20(3r—¢) ]
0

SINmTw

2k%2 |
Xexp(— oz sm"’¢)] , {(A6)

with ¢=1r—0.

For kv./Q.> 1 most of the contribution to the integral
in Eq. (A6) comes from ¢ small. Therefore, we may
approximate the integral by removing the upper limit
to infinity and replacing sin’$ in the exponential factor
with ¢*. Writing the cosine term in exponential form,
the resulting integrals are then in the form of plasma
dispersion functions, and Eq. (4) follows.

APPENDIX B

For the case of cold ions, the beam cyclotron insta-
bility is a ‘“‘quantized” version of the usual ion sound
instability. The magnetic field deforms the continuous
instability spectrum into discrete bands of instability,
without mixing the unstable branch of the ion sound
spectrum with any damped branch. This fact is tied
up with a rather remarkable theorem which is proven
in this Appendix: If T;=0, the quantity

0= /_: dk i, (B1)

where the integral is taken over the unstable modes only
(i.e., v&>0), is independent of the magnetic field. In
particular, Q has the same value for the beam-cyclotron
instability as for the ion-acoustic instability.

This theorem should be applicable to certain other
magnetic instabilities, as will be seen from the proof.
However, for the beam cyclotron instability with hot
ions, the unstable modes do not form a branch distinct
from the Landau damped modes, and the theorem fails.

The outline of the proof is as follows. For T;=0, the
dispersion relation is

2
Dk, w)=1-— —(#vd)z — (k2Ap?)~!
© Qe
X Y exp(—Rrd) I (Frd) "n 0. (B2)
n=—un0 w— €

Since the zeros of D are wy* =we=1iys, Eq. (B1) can
be written

© oD
Q=/ dk Im(27ri)'1/dwwD“—, (B3)
—% C aw
where C is the contour shown in Fig. 2, enclosing all

roots of Eq. (B2) with v,>0. The semicircle at infinity
does not contribute, since the integrand (w/D) (8 D/dw) ~
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Fic. 10. Path traced out by wi* in the « plane as & varies in the
vicinity of an instability band.

w2as| w |2 . The order of integration is now reversed,
giving

0418 w0 aD

0=Tm(2ei) [ dwow [ ak D=

—oo+145 dw

(B4)

If it can be shown that
© dk D
o D dw

is an analytic function of w in the upper half » plane,
then the w contour in (B4) can be moved up to ie.
But as Imw—®, D(dD/dw) becomes independent
of B. Thus, Q is independent of B.

We now discuss some subtleties in the proof. Note
first that D(k, w)=D(—k, —w), and that D is real
for real k and real w. It follows that if D(k, w) =0, then
D(—k, —w*) =0. As a resuit of this symmetry (which
is convenient but not essential to the proof), Eq. (B3)
can be simplified to

0= (2mi)1 /_” dkfcdwzrlgg.

For k real, the integrand of Eq. (BS), (w/D)dD/dw,
has an infinite set of poles on the real » axis (two near
each cyclotron harmonic w=#n%Q,). These poles contrib-
ute nothing to Q and are of no interest. In addition,
if £ happens to fall in a band of instability, (w/D)dD/dw
also has a pair of first-order poles wp*=wrtivy, at
conjugate complex values of w (see Fig. 1, and note
that another branch of modes with v,<0 is given by
reflecting the curve in the horizontal % axis.) The single
pole wyt in the upper half w plane is the only one that
contributes to Q.

A difficulty ensues from the fact that as k approaches
the extrema of an instability band, v+—0 (see Fig. 1),
so that the two conjugate poles w.* and w;~ meet on
the real w axis, pinching the contour C between them.
This corresponds to a branch point of the function

Fk)= / PR
—oo4-48 D 9w

(BS)

o418
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k plane

kiw™)

F16. 11. Path traced out by values of % corresponding to the
roots wi*.

on the real k axis, for each value of & which begins or
ends an instability band. To avoid this difficulty, we
rewrite Q as

wotte 0-1¢ 016 w 6D
- dhys= / dk / o222
¢ f * oot r—wtis D ow

—ootde c—

(B6)

Since «v; is a continuous function of &, it is clear that
adding the infinitesimal 7e to £ does not change Q.

We now consider the path traced out in the » plane
by the roots wy*, as k varies on the upper real % axis.
The topology of this path can be seen from the approx-
imate solution, Eqs. (8), which can be written (omitting
inessential correction terms) as

wrt =3k (va—c,) + 31t { [k (va—c.) -~ QT

— (me/8xm) 2nQ 22, (BT)

The path traced out by wi* in the w plane as k varies
on the upper real axis in the vicinity of an instability
band, according to Eq. (B7), is shown in Fig. 10. If &
were allowed to become real, the two branches would
converge and pinch at the points w; and ws. But as long
as e>01in Eq. (8), 6 can be chosen so that the w contour
C splits the two branches (and also runs above all the
uninteresting singularities strung out nearly on the
real w axis.)

The order of integration can now be reversed, since
the integrand is well behaved on the contour of integra-
tion. This gives

o= ”jﬁdwwawx

c—

(B8)

where the function G(w) is defined, for w on the con-
tour C, by
o0+ie aD

Glw) = / ak D122 . (B9)
r—ootie 60.)
{t can be seen, by solving Eq. (B7) for %, that as w
varies over C, the values of % corresponding to the
roots w,* trace out a path in the & plane shown in Fig.
11. [The solutions k(w*) are of the same form as wi*;
thus, Fig. 11 is of the same nature as Fig. 10.] The &
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contour I' splits the two branches. The various un-
interesting singularities lie either slightly above or
slightly below T

G(w) can be analytically continued into the upper
half w plane by the definition (B9), with the proviso
that if any singularity of [1/D(k,w)]3D/dw tries to
cross the contour T' as w varies, then I is distorted so
as to prevent this. If this is possible, then G(w) is
analytic in the entire upper half w plane. A difficulty
could arise only if T is pinched between two converging
singularities. But we have seen that the singularities
w;t and w,~ cannot meet except at a real value of %
(and, in fact, no two singularities of (1/D)3dD/dw
can converge on T').

Since G is analytic, the w contour C in Eq. (B8) can
be pushed up to i, i.e., we let 5— . But for Imw—ro,
D becomes independent of B. This can be proven most
easily from the identity

1S, exp(— k2 2/Q2) I, (k2 2/Q3)
w1

©0
n==—00

kZ '32 © . k2 ,02
= 912 / dr sin(Qer) exp[w-r— —917 (l—cosﬂer)] .
€ 0 8

(B10)

As Imw— o, the right-hand side of Eq. (B10) goes to
—k%2/w” Thus, Q is independent of B which completes
the proof.

Finally, we note that if 770, then roots wi+%yx no
longer come in complex conjugate pairs. If we follow
the path traced out in the w plane by an unstable root
wrt+iye, as k varies, then we find that we+oye crosses
the real w axis and becomes damped for values of %
below some critical value.?® This invalidates our theorem
as stated, although the theorem is, of course, still
approximately true if 7.<<T..

APPENDIX C

In this appendix we evaluate the rate of change of
electron energy directly from the quasilinear equation.
The electron quasilinear equation may be written as

9. 2e 9
Yo ReT L LB i),
at e;meav< e fee)

(C1)
where the summation is over positive k. The above
expression for 9f./d can be computed from the equation
for fr including resonance broadening. This can be
obtained from Egs. (37), (39), and (59) of Ref. 14.
The result is

. 2¢ nQ, 8 Ja2| ¥ |? w dfe
‘iz_ﬁlmzz__i_’i_‘i_f;,

ot me % 7 oL v {@e)—n viduma

where (@)= (w+i{Awr))/Qe. If (Awx)=0, Eq. (C2)

(C2)
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reduces to the standard form since (w/v1) 8f./dve may
be replaced by (#Q./v1) df./dv.. Note, however that
a nonzero value of (Aw) alters the form of the usual
quasilinear equation and that it is not enough to simply
replace vk by v+ (Aex). Taking the appropriate mo-
ment of Eq. (C2) and employing the techniques used
in Appendix A, we obtain

% = gTe“ | P Imfo[ 143 (2() = 2(~9)

ticot(r(@N[Z)+Z(~) DY, (C3)

where = (w+1{(Awe)) /VZkv,.

For ¢, <4<, and T;KT,, it is now easy to show
that Eq. (C3) reduces to Eq. (33) in either of the
limits (i) (Awe), vx, we— 1K/, or (i) (Awk)S Q./x.
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