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The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied
analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is
described in which the effects of electron and ion Landau damping and linear growth due to the
energetic electron beam are included in a phenomenological manner. Stabilization of the instability is
found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-
stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows
that soliton-like structures are formed by this process. Phenomenological models of both the initial
stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate
and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good

agreement with the results of the simulation.

1. INTRODUCTION

The interaction of relativistic and nonrelativistic
electron beams with a plasma remains an important
topic of research., In addition to the usual applications
both to space plasmas and the heating of linear devices
in the laboratory, a resurgence of interest in this prob-
lem has occurred due to possible applications in toroi-
dal magnetic confinement devices. For example,
Mohri ef al.! have injected relativistic electron beams
into toroidal devices, and Papadopoulos e! al.? have
proposed the in sifu formation of relativistic electron
beams in tokamaks as a current driver, for long pulse
operation, and for supplementary heating. Finally, it
should be mentioned that several of the spheromak con-
cepts require relativistic electron beam drivers. Any
assessment of these concepts requires a good theoreti-
cal basis of prediction of the beam relaxation process.
It is our purpose in this work to provide such an under-
standing based upon computational means.

The failures of quasi-linear theory(or any weak turbu-
lence theory) to describe the beam relaxation process
is well-known in the literature,*® and the strong tur-
bulence theory has been successful in resolving many of
the discrepancies between theory and experiment.*®
However, in view of the complexity of the problem,
several ad hoc simplifications are commonly made in
the name of analytic tractability. We present the re-
sults of a numerical solution of the strong turbulence
equations which describe the temporal evolution of a
beam streaming through a plasma. The model we em-
ploy is one dimensional, which is easily justified in the
presence of even a modest magnetic field. We neglect
the self-consistent interaction of the waves with the
beam particles by the assumption of a constant linear
growth rate for the beam-plasma instability. This as-
sumption can be justified a posteriori, and will be dis-
cussed in more detail in the concluding section. Fol-
lowing the presentation of the simulation results, we
develop a phenomenological model to describe the beam
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relaxation process in an attempt to reproduce the scal-
ings of the fluctuation quantities with the linear growth
rate.

In addition, Manheimer and Papadopoulos® have
demonstrated that the equations which govern the non-
linear coupling between Langmuir and ion acoustic
waves are formally equivalent to Zakharov’s equations®®
for Langmuir solitons. As a consequence, it is rea-
sonable to expect the formation of soliton-like struc-
tures to occur by means of this mechanism, and such a
result is, in fact, clearly shown by the numerical solu-
tion of the dynamical equations.

The organization of the paper is as follows. In Sec.
II, we discuss the numerical simulation. The basic
equations are given and the simulation code is briefly
described prior to a description of the results. Exten-
sive results are presented which describe the scaling
of the fluctuation levels at the initial stabilization and in
the asymptotic, quasi-steady state regime with linear
growth rate. In Sec. II, we describe the pertinent
theoretical considerations including a brief discussion
of the linearized growth rate of the nonlinear interac-
tion, and a presentation of the phenomenological model
which describes the scaling laws is given. A summary
and discussion appears in Sec. IV.

1. THE NUMERICAL SIMULATION

The basic equations to be solved are well known'’

l:z'% _g we(kxe)z] E(R)

=iy, -V E(R) +

we I I ’
2nofdk onlke - kVE(R) (1)

? ] .
(572 Vg + K2c2) dn (k)

=‘i§%ﬁ f’dk'E(k—k')E*(-k’), @
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where E(k) and dn(k) are the mode amplitudes of the
electron and ion oscillations, ¥, is the growth rate of
mode k of the beam-driven electron plasma oscillations,
v,, and v,, are the total damping rates (collisional and
collisionless) due to electrons and ions, ?=47e*ny,/m,
m and M are the electron and ion masses, and ¢, is the
ion acoustic speed. In the derivation of (1) and (2), we
followed Zakharov’s procedure and (1) averaged over
the fast time scale o}, (2) neglected the electron non-
linearity, and (3) described the motion of the electrons
and ions on the basis of the hydrodynamic equations
with phenomenological damping (i.e., v,, and v,;,).
These equations emphasize the importance of the cou-
pling between the electron and ion modes. Note that
Egs. (1) and (2) are the k-space representations of the
equations used in the study of plasma solitons.

In the usual quasi-linear theory, the second term on
the right-hand side of Eq. (1) is-absent, since only
electron modes are considered. As a result, stabiliza-
tion is achieved only when y,=0 and a plateau in vel-
ocity space is formed. However, consideration of the
effect of the ponderomotive force due to the electron
plasma oscillations [i.e., the right-hand side of Eq.
(2)] on the ions permits the self-consistent excitation
of ion acoustic oscillations. Thus, stabilization can be
achieved, for y,>0, when the level of ion oscillations
reaches a point at which the right-hand side of (1) van-
ishes or becomes negative. It should be noted that in
models in which the ions are treated as a motionless,
neutralizing background, the right-hand side of (2)
vanishes due to the M"! dependence and this effect dis-
appears.

Equations (1) and (2) describe the time evolution of
the spatial Fourier spectrum of the electric field and
ion density fluctuations. Under the assumption of per-
iodic boundary conditions, the spectrum goes from a
continuous to a discrete one and the nonlinear coupling
terms become sums rather than integrals. Further,
because of the increase in damping with decreasing
wavelength, the short wavelength terms can be neg-
lected and a truncation of the infinite sum over modes
is possible. The system of ordinary differential equa-
tions which results has been integrated numerically
using a deferred limit integrator routine with an ad-
justable convergence parameter.’! Numerical tests
were performed to insure the insensitivity of the physi-
cal results to variations in the numerical parameters.
In general, a mode spectrum -0.34 <kx, <0.34 was
found to be adequate, with a separation of A(kke) =0,02
between the modes. The electron damping decrement
was assumed to be of the form v, ~k™® exp(-%£21?) for
‘kxe | >0.16 and zero otherwise; and a nonzero growth
rate (y,) was assumed only for a single mode, which,
unless otherwise stated will correspond to kg, =0.02,
and will be denoted by ¥,. The ion damping decrement
was taken to vary linearly in 2, and we use v,
~(m/Mkx,.

Results of the simulation which show the typical time
evolution of the beam plasma system are given in Fig.
1, in which we plot (1) the total spectral energy density
of the plasma modes (denoted by W,), (2) the speectral
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FIG. 1. Graph of the time history of Wy, Wy, and (62/n¢)ms-.

energy density of the beam mode (denoted by W,), and
(3) the root-mean-square fluctuation of the ion density
for the case in which y,/w,=3x10"%. As seen in the
figure, the first stage of the interaction is linear
growth during which the amplitude of W, (and, hence,
W,) increases rapidly while the ion density fluctuations
remain at a relatively low level. The turbulent phase
sets in abruptly when W, exceeds the nonlinear thresh-
old. During this sudden onset phase, the level of ion
density fluctuations increases rapidly, and wave energy
is transferred from the beam-resonant mode at a rate
faster than the linear growth rate, Stabilization is
achieved when the nonlinear energy transfer rate is
faster than the linear growth rate. On a longer time’
scale, an asymptotic state is established with slowly
varying levels of spectral energy density and ion densi-
ty fluctuations. The turbulent nature of the quasi-
steady state, however, is indicated by the rapid fluctua-
tions in W, (shown schematically in the figure) which
are indicative of a strong coupling between the modes
of the system.

In order to determine the scaling of the spectral en-
ergy density in the Langmuir oscillations and the ion
density fluctuations with the linear growth rate in both
the sudden onset and asymptotic phases, we have run
a series of simulations with v,/w,=0.0001 -0, 0010,
The results are displayed in Figs, 2-6.

Figure 2 shows the amplitude of the first peak in
Wy {~W,) as a function of y,/w, during the sudden onset
phase, for three choices of 2, (=0.02, 0.06, and
0.10), in which it is evident that two regimes exist. It
should be noted that while changes in kg, (which cor-
responds to changes in v,/v,) have an effect upon the
saturation level of W,, there is little change in the
overall scaling properties. We find that for low growth
rates, the peak pump-energy scales as (W,), . ~ o,
while for higher growth rates (W), ~¥3. The transi-
tion occurs for y,/w, ~0.0003. The corresponding peaks
in the ion density fluctuations are found to scale as
(6n/74)ms ~7o Over the range, and is shown in Fig, 3
for 2,0, =0.02, The effect of variations of kyx, will be
treated in more detail later in this work; however, in
the meantime we consider the case of £,x,=0.02 in
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FIG. 2. Graph of the scaling of the initial peak (i.e., at stab- (01/1)ems ). ~7Y is indicated. The corresponding result
ilization) of W, with ¥ ; for three choices of kgh, . for W, in the asymptotic regime is given in Fig. 5, for
which we also obtain that ( W;/n,T,), ~v,. Finally, we
plot the averaged energy deposition rate (i.e., the rate
at which energy is extracted from the beam) versus 7,
Figure 4 shows the level of ion density fluctuations in Fig. 6, and a roughly linear relationship is found
averaged over time during the asymptotic regime here as well.
(i.e., the long time scale result after stabilization is
achieved) versus y,, and we find that a result of

more detail.
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FIG. 3. Graph showing the scaling of the value of (6n/%¢) FIG. 5. Plot of the average value of W,/n,T,, during the
versus v, at the initial stabilization. asymptotic state, versus 7.
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FIG. 6. Plot of the average energy deposition rate versus 7,
in the asymptotic regime.

In order to study the time variation of the field and
density fluctuations in coordinate space, the spatial
Fourier transforms are inverted at selected time inter-

in which we plot the ion density fluctuations and the
magnitude of the electric field fluctuations as a function
of position for the case which corresponds to that shown
in Fig. 1. The normalization of the fluctuations chosen
is to the maximum values attained by the ion density
fluctuation and the electric field fluctuation, respec-
tively. Figure T(a) depicts the state of the field and
density fluctuations late in the linear phase of the inter-
actions, and just prior to the onset of the strongly non-
linear regime. The situation shown in Fig. 7(b) cor-
responds to a slightly later time just prior to that shown
in Fig. 1 when the total spectral energy density reaches
a maximum, As noted earlier, the processes of soliton
formation and parametric stabilization are linked, and
it is evident that this figure describes the early phases
of both processes. Figure 7(c) corresponds to the point
at which the soliton reaches maximum amplitude. It
should be pointed out that the solitons reach peak ampli-
tude very quickly once the nonlinear effects become
important, and that Fig. 7(c) describes the system
prior to the attainment of a steady state. In this phase
of the interaction the total spectral energy density is
decreasing. Finally, Fig. 7(d) describes the system
shortly after the steady state has been achieved. The
total spectral energy density and soliton amplitude vary
little beyond this point.

vals. The essential characteristics of the coordinate ‘
dependence of the solution are shown in Figs. T(a)-"1(d) In order to investigate the effect of varying choices of
(o) twg = 6000 (b) twg = 7000
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FIG. 7. Graph showing the coordinate space representations of the electric field and plasma density fluctuations (a) in the linear
phase of the interaction just prior to the onset of the turbulent phase, (b) when the peak in W, is reached, (c) at the time of maxi-
mum amplitude of the spiky turbulence, and (d) during the asymptotic phase of the interaction.
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koA, in more detail, we plot the initial peak in W, ver-
sus k, for several choices of y, in Fig. 8. It is clear
that while the scaling between (W,) .. and %, varies with
Yo, We typically find that (Wo/n,T,)ma = (kor,) %22,

Il. THEORETICAL CONSIDERATIONS

A phenomenological model of the onset phase of the
interaction was produced in Ref. 3 by stressing the
analogy in the linear regime between the formation of
cavities by a modulationally unstable wave spectrum in
the strong turbulence regime and the well-known theory
of parametric instabilities. Once the threshold is
reached (i.e., W,/n T, = k*22) the wave spectrum be-
comes unstable and forms cavities out of the uniform
Langmuir turbulence. This involves the transfer of
energy to shorter wavelength modes, which permits in-
teraction with the background plasma,

The principal purpose of this section is to construct
a phenomenological model of the nonlinear beam-plas-
ma interaction which predicts the scaling laws between
(1) the fluctuation quantities at the time of initial sta-
bilization, and (2) the average values of the fluctuations
during the asymptotic phase with the linear growth
rate. This requires a knowledge of the nonlinear
growth rate and, as a result, this section is divided into
two parts. In the first, we consider the parametric
growth rate in an effort to develop some insight into the
scaling of the nonlinear growth rate on the wavelength
and wavelength spread of the unstable spectrum as well
as on the effect of electron and ion damping. Using the
estimates and scaling found in the first part, we devel-
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op the phenomenological model of the nonlinear stages
of the interaction in the second part of the section.

A. The linearized dispersion equation

Useful insights into the nature of the nonlinear stabil-
ization mechanism can be obtained by consideration of
the beam generated waves as a pump spectrum with
frequencies in the vicinity of the plasma frequency and
with wavelengths in the range k, — Aky/2 <k <k, + Aky/2,
We then examine the linear stability of the spectrum us-
ing Eqs. (1) and (2). This is analogous to determination
of the growth rates of the parametric instabilities ex-
cited by the beam modes, and stabilization of the beam-
plasma instability can be expected when the nonlinear
term on the right-hand side of (1) dominates over the
term in y, (i.e., the linear growth rate).

The linear dispersion equation takes the form

4 w? f dr’ Wo(k)

2
e

~l(w +iv,, —iv,) =3w, (B2 ) (RN’

RN

. 2 2 m
w(w +iv,,) =k = - 1\7

w

X% (e, (3)

where Wy(k')= |E(k’)|?/87 is the wave energy density in
the beam-driven modes. For a given spectrum Wy(%'),
one can find the parametric growth rate as well as the
regimes of importance in the spectral transfer of en-
ergy. In this section, we describe the spectrum of
beam-driven modes by means of a Lorentzian distribu-
tion of the form
W, Ak
N=220

Wolk)= T (B =R+ AR

It is clear that

(4)

lim Wy(k

Akg=0

=Wk ~ky);

therefore, such a model spectrum is useful in the de-
termination of the effects of a pump spectrum with both
finite wavelength and finite bandwidth on the dispersion
equation. A detailed discussion of the dispersion equa-
tion is beyond the scope of this work, and we shall pre-
sent only a brief discussion of the solutions to (3) and
(4) in the text, The interested reader is referred to the
Appendix for further details.

In the limit in which k, < %, the threshold condition for
the oscillating two-stream instability can be written in
the form?®

Wo/n,T, >3k, )2(1 — 4K2/R%), (5)

and it is clear that the effect of finite %, is to reduce the
threshold required for instability. It can also be shown
that (w=w, +iy)

9y fom Vo
z“ ck Mn

l!Z

w, - )4[ (er, ) +Z)—Z]'2 (6)

e
and

3 Vo
2 > 2
y 4w—(kA)[ T

[ 2 ) (1

—3(kx )2(1 4"%)]

S, (1)
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subject to the requirement that
2 (x4 +¥% 5> [wy = 3(eo/RIEA P w . ®)

We note that in the opposite limit (i.e., #<k;) the para-
metric decay instability is obtained. However, the
threshold condition for the decay instability

Wo 1m

2
= 8M>6(k7\)

is typically higher than that for the oscillating two-
stream instability, and we confine the discussion in this
paper to the latter instability. In addition, we observe
that the predominant direction of energy transfer by this
process is toward k> k, (i.e., toward shorter wave-
lengths).

The effect of small, but finite, bandwidths can also be
included analytically when, in addition to (8), we have

¥ > 3(ako/R) I, Pw, . ©)

In this case the threshold condition is of the form

- T > 3(kr, )2 (1 4 §+4Ak°) (10)
(1]

and we have that w, is given approximately by (14) and

yrad zm(kx?[ 8—3(kx>“( 45%*49;;?)]

x[jmv+?1—(kxe)2<1- k°+4Ak2)] . (11)

It is clear that, in contrast to the effect of finite %,, the
effect of finite Ak, is to increase the instability thresh-
old.

The scaling of the oscillating two-stream growth rate
with the spectral energy density of the beam-driven
modes can be obtained from either (7) or (11) in the
dipole approximation (i.e., k,= Ak,=0). In the regime
in which 3(&x,)2 < W,/n,T, <m/M, the maximum growth
rate is given by

Y 1 W
- =l ) 12
(‘%)max 4 n,T, 12
On the other hand, when W,/n,T,>3(kr,)?, m/M we find
y 1m W >1/2
X ) 13)
<we>max <3 M ”o e (

The complete dispersion relation has also been stu-
died numerically, for cases in which % and &, are com-
parable, to determine the scaling of y with ko, when
ko/k~1. The results are shown in Fig. 9 in which we
plot the maximum growth rate as a function of k2, for
various choices of W,/n,T,. We note that peak growth
has been found to occur for %<2k, in the cases con-
sidered. As seen in the figure, this scaling is depen-
dent upon W,/n,T,, but ¥ max 18 relatively independent of
ko for kya, < 0.02. However for higher values of kg,
(0 02 <ko)\e <0.10) the scahng ranges between y .,
~ (kor,)° 18 = (o2,)**®, depending upon W,. I should also
be pointed out that the transition region for &,, >~ 0,02
corresponds to those modes with group velocities com-
parable to the ion sound speed.
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FIG. 9. Plot of the maximum growth rate of the oscillating two-
stream instability versus koA, for several choices of Wo/n,T .

Solution of the dispersion equation in the case in which
Vins Vens and y, are nonzero yields little additional in-
sight in relation to the complexity of the problem, and
we limit ourselves to a discussion of the necessary -
threshold condition in the dipole approximation. The
approximate threshold condition,

kg
kz

2 >3(k>\e)2[ -422 4= (kx)“ e] (14)

W,
n,T,
is obtained by setting w=0. It is clear that, as in the
case of finite Ak, the effect of damping is to enhance
the instability threshold, thereby, causing the transfer
of energy by this mechanism to be less favorable and
raising the saturation level of the beam-drjven modes.
We also note that in the dipole limit, the resulting
dispersion equation is similar, but not identical, to the
one considered by Nishikawa. The difference arises
from the fact that the coupling coefficient between the
ion and Langmuir modes (x in Nishikawa’s notation'?),
and which is the coefficient of the nonlinear term in (2),
was assumed by Nishikawa to be constant. Here, the
coupling coefficient is k dependent and depends on the
frequency mismatch between the pump spectrum and the
excited Langmuir waves (i.e., £/%\%w,).

B. The phenomenological description

The phenomenological description is based upon the
linearized theory of the parametric interactions. We
consider the wave spectrum to be composed of two
groups of high frequency Langmuir waves, one of which
is resonant with the beam and is denoted by W,, and
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one composed of the nonresonant waves denoted by W,,
and the ion waves designated by W,. There are two re-
gimes of interest in this work: the initial stabilization
of the linear instability (i.e., the sudden onset of the
turbulence process), and the subsequently established
asymptotic, quasi-steady state. The energy balance
between these groups of spectra is provided by both
linear and nonlinear mechanisms. In the case of the
beam-resonant waves, W,, the principal source of en-
ergy is the linear beam-plasma instability, and energy
is lost through the parametric coupling with other
modes. The nonresonant spectra (i.e., W, and W) can
grow only by means of the nonlinear transfer mecha-
nism, and are subject to damping by the background
plasma. We note that linear damping of the beam-reso-
nant spectrum is excluded due to the high phase veloci-
ties of the waves involved.

The time evolution of the system in the initial stabil-
ization-phase can be described by the following set of
rate equations

9
5 Wo=2y,W, - 2v(W)W,,
2
ot

(15)

lezy(Wo)Wl y (16)
where v, is the linear growth rate of the electron beam
instability, and v(W,) is the nonlinear transfer rate
which is equivalent to the growth of the oscillating two
stream or parametric decay instabilities. For sim-
plicity, we only consider the transfer of energy between
the pump and the fastest growing mode in the dipole ap-
proximation.

In the limit in which 3(kA, P <W,/n,T,<m/M, we have
that

ﬁnoT _2Y°—§wen T ° am
g Wi 1 W,
37 noT, 2 YengT,’ (18)
where
t
W,
_ » Yo
T—fo‘ dt Wil (19)

Equations (17) and (18) may be solved immediately to
obtain

=) -G fm () 1)
= +2y,7-l—5") le -1 (20)
nOTe nOTe in 0 nOTe in *P 2 ’
(). L)
n’OTe nore in 2 ’

where ( );, denotes the initial value of the enclosed
quantity. On the basis of this set of equations, we
can sketch the approximate behavior of the beam
plasma system as a function of 7. Evidently, W, in-
creases linearly with 7 (which corresponds to an expo-
nential dependence on !) until the contribution of the
second term on the right-hand side of (17) becomes sig-
nificant. The maximum value of the spectral energy
density of the beam-driven modes occurs when 7= Tma,
where

(21)
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1 Yof Wi \7!
=W, Tm l(=1n[4—°(——-) ] . 22)
27 m we noTe in (
Substitution of (22) into (20) yields
W, w -1
<_9_> :(—°—> +4h1n[4%-<ﬂ) ] (23)
n()[e max nOTe in we we nOTe in

Since the logarithmic variation in (23) provides only a
weak variation with y, and (W,),,, we have that (W,)
~7, in this parametric regime.

max

In an analogous manner, it may be shown that in the
regime in which m/M, (kAP < W,/n,T, the peak value of
the spectral energy of the beam-driven modes is given
approximately by

W0> 3ﬁ2LM M”zyf,(Wl)" 2
<noqvg o 4wgm1“[<3ﬁ) @ \nT ] . @)

0% e’ in
As a result, the scaling is given by W, y2 in this re-

e

gime. To summarize these results, we have that
1
Yo, %(kke)2<y—° <Z;—Z—
(_“—’,TL> o We (25)
Ryl ./ max Y, _ m m
'Vg, ZOL>31/2M’ M<3(k)\e)2

e

within the context of the dipole approximation in which
electron and ion damping are not included. Of course,
it should be noted that since the inclusion of phenomeno-
logical damping results in a decrease in the growth rate
of the oscillating two-stream instability, the maximum
value of the spectral energy density of the beam driven
modes (as well as the level reached at saturation) will
be higher than that predicted within the context of the
dipole approximation.

Comparison of (25) with Fig. 4 shows that good agree-
ment with the simulation can be achieved by such a
phenomenological model, and we observe that not only
are these two regimes in the scaling of (W), and ¥,
found, but the transition point is also in correspondence
with the results of the simulation.

The scaling between (W,/n,T,)max and ko\, can now be
readily explained. The initial saturation occurs when
the linear (y,) and nonlinear (y,,) energy transfer rates
are in balance (i.e., ¥, 57,,). Therefore, if we con-
sider the scaling of the mode with the fastest nonlinear
growth for which (see Fig. 9) v,, = (B, ) *(W,/n,T,)* /2,
then it is clear that stabilization will occur for

(WO/nOTe)max = Yzo(koke)-o.a *

which is in qualitative agreement with the results of the
simulation.

The asymptotic state is, perhaps, the least explored
regime in the study of this nonlinear stabilization
mechanism; however, guided by the simulation results,
we will also discuss a phenomenological approach in
this regime. In the strongly turbulent regime we must
also include the low frequency fluctuations in the analy-
sis. We define W,=7,(6n,/n,)?, and attempt to fit the
simulation results to the following set of equations, for
Te = T{ ’
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9 — o * 26
3t 7T, 2}/0”07‘@ g n,T, ’ @6)
ad T’Vl * Wo Wl 2
2 = 7
ot n,T, Y nT, VlnoTe ’ @7)
and
W, /n,T,=2W3i/'2, (28)

These equations reflect the difference between the
quasi-steady asymptotic regime and the linear phase of
the interaction; specifically, the presence of finite am-
plitude ion acoustic waves and cavities allows a mecha-
nism for the dissipation of long wavelength Langmuir
waves via scattering off density fluctuations (i.e., the
Dawson-Oberman high frequency resistivity’®). This
process is included in the term v*W,, where

v* = Bl W,w, (29)

and 2 is a factor which depends upon the detailed char-
acter of the spectra. Under the assumption that the
density and electric field perturbations satisfy the pres-
sure balance condition, we expect W}/* ~6(kx,f from
which it follows that v* ~68W!/2,,. Equation (28) fol-
lows from pressure balance considerations. The damp-
ing of the W, spectrum is modeled by the term in v,.

A basic aim of this paper is to determine how well the
phenomenological description of Eqs. (28)-(30) approxi-
mates the simulation results for the stationary state.
Under the assumption of a steady state, Eq. (28) im-
plies that

Yo X3BWL 2w, . (30)

As seen in Fig. 4, such an approximate relationship
holds for the range of the simulations with 8 =~ 0, 025.
Equation (27) yields v*W,=v,W, in the steady state re-
gime; therefore, the energy deposition in the system
(27,W,) will scale as 2y,W, ~ 2Tv,yn,T,/w,. Compari-
son with Fig. 5 bears out this scaling for v, ~10"%w,.
This value of v, corresponds to Landau damping for the
mode corresponding to k2, = 0.21 (or an equivalent
phase velocity of about 5.1 »,). An important conclu-
sion to be drawn from this scaling is the linear rela-
tionship between the energy deposition rate andy, Fi-
nally, Eq. (28) was compared with the simulation re-
sults and agreement was found to be better than 40%.

1IV. SUMMARY AND DISCUSSION

In the present work, we have subjected a theory of the
stabilization of the resonant beam plasma instability by
a nonlinear coupling of Langmuir and ion acoustic flue-
tuations to a detailed analytic and numerical study.*:1%
The interaction proceeds via the oscillating two-stream
instability which can be important if the spectral energy
density of the beam-generated spectrum of Langmuir
oscillations exceeds threshold. At this point, both
shorter wavelength (with correspondingly lower phase
velocities) Langmuir oscillations and ion acoustic fluc-
tuations are driven unstable, and the transfer of energy
from the spectrum of waves in resonance with the beam
can become important. As a consequence, the peak
value of the beam-driven waves (and, hence, stabiliza-
tion of the interaction) occurs when the nonlinear trans-
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fer of energy to the nonresonant Langmuir modes and
ion acoustic oscillations balances the linear growth of
the resonant waves.

It should be noted that effects due to spontaneous
emission, stimulated scattering, electromagnetic mode
coupling, particle trapping, and pitch angle diffusion
have been neglected tn the analysis. In addition, para-
metric decay interactions, which tend to {ransfer ener-
gy to longer wavelength modes with higher phase veloci-
ties, were neglected in the treatment. The importance
of these effects, however, must be determined for spe-
cific applications of the theory.

The most important aspects of this work are the de-
termination of scaling laws between the growth rate of
the linear beam-plasma instability and the fluctuation
levels in the electric field and plasma density attained
at the initial stabilization and in the asymptotic state,
as well as the formulation of a phenomenological de-
scription of the process. Estimates of the scaling of
the spectral energy density of the beam-resonant modes
and the ion density fluctuations are obtained by consid-
eration of the nonlinear transfer rates, To this end, we
include a brief discussion of the effects of finite wave-
length and finite wavelength spread in the pump spec-
trum on the growth rate of the oscillating two-stream
instability, A discussion of the effects of electron and
ion damping on the growth rate is also included. On the
basis of this study, estimates of the scaling of the spec-
tral energy density of the beam-resonant spectrum at
the point of initial stabilization are obtained. Specifi-
cally, it is found that the peak spectral energy density
of the beam-driven modes is directly proportional to the
linear growth rate for y,/w,< m/M, and is proportional
to the square of the linear growth rate, otherwise.

This is found to be in substantial agreement with the re-
sults of the numerical simulation. Agreement is also
demonstrated for the predictions of the phenomenologi-
cal model and the results of the simulation in the
asymptotic regime. Quantitative estimates of the level
at which peak spectral energy densities occur are

found, however, to be sensitive to the levels of electron
and ion damping included as well as to the central
wavelength and wavelength spread of the pump spectrum.
It was also demonstrated by the numerical simulation

of Eqs. (1) and (2) that the parametric saturation mech-
anism is intimately associated with the process of soli-
ton formation.

An immediate application of the parametric stabiliza-
tion mechanism is to electron streams in the solar
wind; specifically, to the case of type I solar bursts.
Here, the electron streams have been observed to
propagate large distances with small energy loss, which
is in contrast to the predictions of the quasi-linear
theory. It has been further shown that for parameters
typical to such streams, the nonlinear stabilization
mechanism described in this work is appropriate.® Ex-
perimental verification of the action of this mechanism
would be provided by the observation of solitons in con-
junction with the electron streams. However, direct
measurement of soliton fields in the solar wind is, at
the present time, difficult and we must rely on indirect
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methods. In particular, electromagnetic radiation with
w ~2w, has been observed to be associated with type Il
solar bursts., The intensity of this radiation is seen to
scale linearly with the stream for weak electron fluxes,
and to scale with the square of the stream density

when the electronflux rises above a certain level,

Since Langmuir solitons may be expected to emit 2w,
radiation and since the linear beam-plasma growth rate
is directly proportional to the electron density, an esti-
mate of the scaling of the radiation intensity with the
linear growth rate can, in principle, be obtained which
is based on the stabilization mechanism described here.
It has been shown that the volume emissivity of 2w,
radiation from densely packed Langmfir solitons de-
pends linearly on W,. Consequently, the radiation in-
tensity is expected to scale linearly with the electron
density for weak electron fluxes and quadratically for
strong fluxes. As mentioned previously, this in in ac-
cord with observations.'®

Another important consequence of the present work is
its application to plasma heating by means of relativis-
tic electron beams.!” For long beam pulses, the energy
deposition during the initial phase of the interaction is
small (i.e., Wy/n,T,<1) and it is sufficient to consider
the asymptotic regime. From Egs. (26)~(28), it can
be shown that the stopping length for a relativistic beam
with energy €, = omc? per electron (where 6 is the rela-
tivistic factor) is of the order of
c (6-1ymc?

L=0,02—
v

- T (1+0).

(31)
e

The important observation which arises from Eq. (31)
is the dependence of the stopping length on (v, T,)*. As
a consequence, since v, describes absorption by the
thermal plasma, it is clear that short coupling lengths
will result from having beams interact with preheated
plasmas. For example, if the end plugs of a tandem
mirror were preheated to 10 keV, the stopping dis-
tance expected will be of the order of 5 m for typical
operating parameters (and v, ~0,001w,). It should also
be noted from the preceding equations that background
plasma heating will be governed by

a_;f =54, X0 T (32)

We

which implies that the plasma temperature will increase
exponentially. When v,/w,=0.001, the exponentiation
time is of the order of 20y;', which suggests that long
pulses will play a more effective role in heating plas-
mas, These aspects, as well as detailed pulse shapes,
will be discussed further in a future publication.
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APPENDIX: THE LINEARIZED OSCILLATING TWO-
STREAM DISPERSION EQUATION

Substitution of the Lorentzian spectrum (4) into the
dispersion equation (3) yields an integrand with four
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poles in the complex 2’ plane which are located at

B! =k ik, % k<:t1 +§ CRL ) ZZ’(’Z‘;E)Z“)) .
When k(Imw +v,, —,) >0, there are three poles in the
upper half-plane and one pole in the lower half-plane.
Thus, if we integrate along the real %’ axis and close
the controur in the lower half-plane, then we pick up a
single residue which corresponds to the pole at &' =4,
—iAk,. In the opposite case, we close the contour in the
upper half-plane and the only contribution to the integral
is due to the residue of the pole at &' =k, +iAk,. The
result is

wlw +iv,,) - k2l

_ Im 4 WO
=z T
“ (A1)
X A
2 w2(lr,)t = [w + T = 3@k, ) ker w0, I
where
T=v,, =, +30,| k| 8%, (a2)

and 0,=sgn(Imw +v,,—7%,). It is apparent that the effect
of the finite bandwidth of the pump spectrum (i.e., Ak,)
appears as an effective damping mechanism; however,
the appearance of the factor o, requires some physical
interpretation. In the absence of the pump spectrum the
coupled ion and Langmuir waves are damped by the
background plasma, and these waves can grow only at
the expense of energy from the beam-driven modes.
When o, >0, the effect of the finite bandwidth is dissipa-
tive, and there is effective enhancement in the damping
decrement of the coupled Langmuir waves. On the
other hand, when o, <0, there is an effective “negative
dissipation” with respect to the pump waves. In both
cases, the effect of nonzero Ak, is to inhibit the trans-
fer of energy to the coupled acoustic and Langmuir
modes. As a consequence, the broadening of the pump
spectrum is expected to result in an enhancement in the
levels of the beam-driven waves when stabilization is
achieved.

In general, Eqs. (Al) and (A2) represent a quartic
dispersion equation with complex coefficients

o+ a0+ a0’ a0 +a,=0,

where
a;= —-6(k1,) (A, Jw, +i@T +v,,),
a,==[$& + P23 +2v,T +6i (k) (B Jw, (T +v,,)],
a, = 600, ) (ko) Jw, (€5 + v, 1) — v, + 2871,
a, = kAR = U2ws + 6(kA,) (Br Jw TRCR

and
Q2= % (kxe)“wﬁ(l —4r2 /) + [
3m W
2_9m 4 o
US=37 (k2,) .~
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