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The electromagnetic radiation at the first and second harmonics of the electron plasma frequency from a
localized Langmuir perturbation is computed for the case of a uniformly magnetized plasma. It is
assumed that the localized perturbations in both the electrostatic field and plasma density have
cylindrical symmetry about the direction of the ambient magnetic field. The analysis is initially
performed for such an arbitrary localized perturbation, and then applied to treat the case of a quasi-
planar Langmuir soliton propagating in the direction of the magnetic field. An extensive numerical study
of the angular dependence of the radiation spectrum as a function of the ratio of the electron plasma and

cyclotron frequencies is described.

. INTRODUCTION

The question of strong Langmuir turbulence in mag-
netized plasmas is important in studies of beam-plasma
interactions in both space and laboratory plasmas.
Heretofore, studies of strong turbulence theory in mag-
netized plasmas have centered on the dynamics of col-
lapse and the shape and stability of the localized struc-
tures which result. However, such structures are ex-
pected to have electromagnetic signatures at harmonics
of the electron plasma frequency. While the electro-
magnetic radiation from Langmuir solitons has been ex~-
tensively studied for field-free plasmas,'™ there has
been scant treatment of the problem of the strongly tur-
bulent radiation process in magnetized plasmas. This
problem is of particular relevance due to increased in-
terest in experimental studies of electron beam driven
strong turbulence in the laboratory.®™" It is our inten-
tion to address this question in the present work, and to
derive expressions for the radiation emissivity from
spiky Langmuir turbulence at the first and second har-
monics of the electron plasma frequency.

The organization of the paper is as follows: In Sec.
II, we derive an expression for the emissivity from an
arbitrary, cylindrically symmetric soliton at frequen-
cies w = w,, 2w, (Where w, denotes the electron plasma
frequency). It should be noted that the treatment of
emission at the electron plasma frequency is restricted
to the limit in which the radiation wavelength is much
less than the scale length of the soliton. In order to in-
vestigate simplified scaling laws between the radiation
emissivity and the soliton amplitude, we consider the
limiting case of one-dimensional Langmuir solitons in
Sec. III. A numerical study of the angular dependence of
the emissivity is also presented in this section. In par-
ticular, we investigate the variation of the radiation pat-
tern with w,/§2, (where 2, is the electron cyclotron fre-
quency). A summary and discussion appears in Sec. IV,
and the derivation of the plasma dispersion tensor and
the radiation source current is given in the Appendix.
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il. THE EMISSIVITY

We assume a localized Langmuir perturbation of the
form

E(x,t)=vo(r,z) sinw,t , (1)

where V¢(r,z) defines the soliton envelope, and the am-
bient magnetic field By(=B,€,) defines the z axis. The
interaction between the electrostatic field and the asso-
ciated slow time scale oscillation in the plasma density
is implicitly included, and we use 6n(r,z) to denote the
density caviton. Both ¢(»,z) and dxn(r, z) possess cylin-
drical symmetry about the z axis, and it is assumed
that ¢(r,z) and &n(r,z) are odd and even functions of z,
respectively.

The radiated power is defined to be

1 T/2
P:-um—f dtfd3x6E(x,t)-6Js(x,t), (2)
Towl Jorya

where O0E(x,#) is the radiation electric field, 6J,(x,¢) is
the source current due to the localized Langmuir per-
turbation, and the spatial intergration is over all space.
We implicitly assume, in this analysis, that a steady
state has been achieved in which the soliton structure
changes, at worst, slowly in time. Such a state may be
formed, for example, due to the nonlinear stabilization
of electron beam-plasma instabilities,!' where the lin-
ear growth of a resonant spectrum is balanced by the
nonlinear transfer of wave energy to modes not in reso-
nance with the beam. Equation (2) can be expressed in
terms of the Fourier amplitudes of SE(x,f) and 6J,(x,?)
in the following manner:

P=-—(21T)4lim%fd3kf dw OE(K, w) - 8J¥(k,w), (3)

T w

where the asterisk (*) denotes the complex conjugate,
and the Fourier transform is defined as

f(k,w)=(21r)'4fdsxj_-xdtexp(iwt—ik-x)f(x,t). (4)
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A self-consistent relation between the radiation field
and source current is derived in the Appendix and is of
the form

Alk,w)- 6E(K, w) = ~ (47i/w)8J (k , w), (5)
where the dispersion tensor is given by (k=%,6, +,€,)
Ak, ) =(c?/w?)(kk — B} +e(k, 0) . (6)

In Eq. (6), | is the unit dyadic, e(k,w) is the plasma di-
electric tensor, and we have that

€xy TEyyTE) 5 €y T —€yyTIEy, € =63,

Exe =€ gx =€y =€y =0,

where ¢; =1 —w2/(w? - Q%), € =w’Q./w(w? - Q%), and ¢
=1-wl/wl. Here, w,=w.l+0n.,/n)'’?, where n, is
the ambient electron density and 6n,, denotes the extre-
mum of 6n. This dispersion tensor inciudes the nonlin-
ear modifications to the cold plasma approximation and
has been derived under the restriction that the wave-
length of the radiation be much less than the scale length
of the local perturbation.

Inverting Eq. (5) to find 6E(k, w) as a function of
8J(k,w), we obtain'?

OE(ky w) = —(4ni/W)[>\ss(k7 U))/A(k) w)]
xé(k; ’-'J)a*(k’ w) 'bJs(k,'w) ’ (7)

where A(k,w) is the determinant of A(k,w), r(k,w) is
the trace of the classical adjoint of A(k,w), and a(k, w)
=8E(k, w)/ |6E(k,w)| is the unit polarization vector.

|

6J(1)(k

63> =i(2m) 45 4

+[1-e*(k, 2w,)] (v +-(;§£_:ﬁ-gvl)((v¢)2 +

and V,=V -€,(8/3z). If we write the square of the delta
function as 6%(w — wy) =lims_, . (7/27)8(w - w,) and eval-
uate dA/0k? for the appropriate mode, then the expres-
sion for the radiated power becomes

© - 2
aLl _ 5 2 WA (K, w)
=(2m) Z:j; dk kj; dw-—gzmé(kz..ki)
X[ |8, @) - 83 () 28w - w,)

+ |4k, w) - 8T(K) [*8(w — 2w,)] . (12)

In the evaluation of the radiated power at w= w, and
2w, which follows, we make use of the expression!?

A= -i(s22)' M2 Ra25 A52)

to describe the unit polarization vector, where  is the
classical adjoint of A. It should be noted, however, that
this approach is invalid when the eigenvalues of A are
degenerate (i.e., when k2=k?%). Since this occurs in the
limit in which Q,~ 0, care must be exercised in order
to treat the field-free case.
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—(2m) 4% J'dsxexp(—zk x)—— (Vd) +—7—L7v1¢> +1—§-‘-"—%é,xv¢>,

The power radiated per unit solid angle subtended by k
is found by substitution of Eq. (7) into (3), and it can be
shown that

Aes.s(k: w)

apP 613 L Y “dw
=(27) yﬂTZJ; dkkfo. W F(3/0R ) A(K, ) 4223

X |8k, w) - 8I Xk, w) |*6(k* - £Y) (8)

where E* denotes a sum over the wave modes of the
system, dQ,=2r sinfd6 (where 6 denotes the angle be-
tween k and B;), and we have summed over the contri-
butions of positive and negative w. The appropriate
wave modes are described by

it - 2031 -a?)
ot 201 =af) -pY(sinte 7p) ’

(9)

where the “+” and “~" denote the ordmary and extra-
ordinary modes, respectively, a=w?/w?, B2=0}/w?,
and

p? =sin'8 + 4(w/R, )X (1 — a?)? cos®s .

This corresponds to the well-known Appleton-Hartree
dispersion relation in which w, has been substituted for
w, to describe the nonlinear effect.

In this paper we treat emission at w~w,, 2w, and
write the source current as the sum of contributions
(see the Appendix)

63 4(k,w) =563V (K)6(w — w,) + 8T P (k)d(w = 2w,)

where

(10)

2 2
[ dtx exat-i- 0 (0 +;z%zvi¢) (v +rr Vo + 1 3831 - 2670k, 20)] (6, % V0)

(1)

T (Vat )2)]

A. Emission at w ~w,

In this frequency regime we are restricted to consid-
eration of waves whose wavelength is much less than
the scale length of the perturbation, which is equivalent,
in practice, to the condition that c*%/w?> |8n,./ng|.

The emissivity 7[=w "'dP(w)/d%,] is defined to be the
power radiated per unit frequency per unit solid angle
subtended by k. In computing 7(w,,6), we retain only
the contribution due to the oscillatory current at w,
[i.e., aJ;“(k)] and find

E N p £sin%g)
+
Mws, 0) = 64mnc® ( ny ) Z " pcosig

2
x [Ni sing cosél, - ——=2—y
we =8

e

2 .2 On 92 2 :
x (N%sin’e +—=% ——%(sin*9 ¥p)) I, | , (13)
ny 20)8
where
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f f dr v cos(k,z cosd)Jy(k,r sme) V.,(l) ,  (14)

I f dr v sin(k,z cosf),(k» s1r10) on V b, (15)

p? =sin'6 + 4(w?/Q3)(5ny./n, ) cos?d

N(=ck/w,) is the index of refraction,

) 5 & -1
Ni=1- ix(l +-L‘-)<ﬁ* +—-€-(sm29 :tp)) , (16)

"y ny i) 2w 2

and J, are the regular Bessel funétions of order n.

B. Emission at w == 2w,

In this frequency regime, the nonlinear contributions
to the dielectric properties of the plasma can be ig-
nored, and the Appleton—Hartree dispersion relation'®
can be employed. After retaining only the oscillatory
source current at 2w, in Eq. (12), we find that

ZN*(p +5in%g)
36ﬂm3c3we p cos’H

2
X (Aimlln,u +Au,11n, LA 1,1111,14 +Al,111,1) 3

7(2w,,9) =

an

where

I ,= J::dz J; i dr v cos(k,z cos)

Xd (k.7 sing)(Vo)?
I, = fndz J:dr sin(k,z cosg)

XdJ ok sing)(ve),(Vo),,

- - (18)

I, :J"n dz fo dr r sin(k,z cosf)

XJy (b sing X Vo) (Ve),,
IL,.,= _[:dz jl; mdrrcos(k*z cos6)

Xd ok sing)(v¢)?,

and

:
An,u=—lkg5in9[§Nz cos?o 2w,

2 27 T (W - Q%) (40! -0)
(7w —92)92 ]
e

X(Nisinze —-) Tur'“r(sm 6%p
e

- 4w

Ay, =[w§/(w2 -Q%)|N%sing coso,

2
A, ”--——L'—fk cose[N2 sin’g +4 4 e

(Nz sin%g ——-)

_1 . | 2 6’*’?2
Al'l_zk*SII'le[(zN*cOS 6 —(wg _Qg)(‘}wz _QZ)

. (5% -2 )Q

x(N%sin’g ——) —l—%———‘r-"*—r sin®6 ¥ ))]
(v (aw? - g 0P

In addition,

(19)
2
;%%i—w%‘(sm 8 %p ]

We

Cl.)e—

p? =sin'6 + 9(w?l/Q%) cos?s
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3w’
Ni=1- - .
* 1202 - 20Q%(sin%e ¥p)

Hi. THE CASE OF QUASI-PLANAR SOLITONS

We choose to apply the expressions derived in Sec. II
to the case of quasi-planar solitons since this is the
only regime which is analytically accessible, and for
which the angular spectrum of the radiation may be ob-
tained in a relatively straightforward manner. For nu-
merical simplicity, we assume the electric field and
plasma density perturbations to be of the form!

Vo(r,z)=E(») sech k(r)z]€, (21)

and
- 6*(rNE sech k(r)z] , (22)

where ), is the electron Debye length, 1/x(») character-
izes the parallel scale length of the perturbation,

W(r)/nT, =125 N Y1 +y,T,/T,), (23)

dn(r,z)/ny=

W(r)=E¥»)/87, T, and v; are the ion temperature and
ratio of specific heats, and T, is the electron tempera-
ture. In addition, we assume that x(r) = k, exp(=/p),
where p(>» K(;l) characterizes the transverse scale length
of the perturbation, It must be remarked that in order
to neglect the radial component of the soliton field, we
must have that

(Vio | et/ (Wl -ad] V.o |, (24)
and
AT | Vu® | > tan( (kg )Rk, ———Lg (V. 0. (25)
e
As a result, we cannot treat the case in which ¢, is ar-

bitrarily close to £, by means of Eqs. (21) and (22).

It should be pointed out that no analytic soliton solu-
tions possessing cylindrical symmetry have presently
been obtained for either field-free or uniformly magne-
tized plasmas. Indeed, it can be shown that Langmuir
solitons in field-free plasmas are unstable against col-
lapse in more than one dimension.'*?® Therefore, in
seeking to apply this work in the field-free limit, care
must be exercised to restrict the application to early
phases of the process in which the transverse extension
of the soliton remains greater than the extension along
the symmetry axis. The gquestion of transverse collapse
of multidimensional solitons in magnetized plasmas,
however, still lacks solution. Studies of modulational
instabilities (which constitute the Fourier sSpace repre-
sentation of the coordinate space collapse'?) of Lang-
muir waves in a magnetized plasma indicate that the
magnetic field can act to stabilize the solitons agaiast
transverse collapse.!® In addition, results of numerical
simulation'® provide corroboration for the hypothesis
that the magnetic field tends to inhibit transverse col-
lapse. In short, while these structures may still under-
go transverse collapse, the time scales may be greatly
enhanced. In view of this, the assumption of quasi-
steady-state soliton structures exhibiting greater trans-
verse than parallel scale lengths is a reasonable one
for magnetized plasmas, and the form of the radial de-
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pendence chosen in Eqs. (21)-(23) provides for analyti-
cal tractability without obscuring the physical charac-
teristics of the emission.

Use of (21)—(23) immediately yields the following ex-
pressions for the emissivity at w, and 2w,:

31 (0 \P ng T, [ Bngy \ ™2 yiT\7Y .
S [Ze) Z0fef “Tox FYALER 2
e, ) 32 (C> Ae ( o ) (1 T, ) sin'é

N%p +sins
XZ *(P )Iﬁ*

p (26)

and

2 3
7(2w,, 6) =%(%) mT, tan?g

Ae
N ,(p +sin’g
x2S o, (@1
E

where v} =T,/m,,

322 2w} 2.2, 3

\IQ(G)_ZN*cos ] —( 3 —9";)(4w3—93) <Nism 8 2 )
7(;.)292

4(we - QE)(4we

)(sinze ¥p), (28)

and the source integrals are
- k2 cos®e \ w(r)
I Ef drr(l +-* —
12 () (7) T,
mk,cosf
X i ——,
Jo(k*rsme)sech< () )

f k2 cos9 W(r)
dr
) T,

(29)

) Tk, cosG)
x Jo(k 7 sind) csch( 2(7)

The only regime in which Eqs. (29) and (30) can be in-
tegrated analytically is the case for which %, < x;. How-
ever, it is important to recognize that 7(w,, 6) has been
derived subject to the condition that k2, > x, (which is
equivalent to 60%N%> c?|6n,,/ny|) and no further analytic
reduction is possible for the case of emission at w,[Eq.

(30)

(29)]. Turning, therefore, to the case of emission at
2w,., we find that when
6(ve/c)? << [Bne/ng]| , (31)
the emissivity becomes
16 1c3W, T
20,0 =—( =) —2(1+L4) D el6),  (32)
3\c w3y T, T
where Wy=W(»=0) and
P +gin 9 2l ot tan’g
©.(6)= pN, (6)(1 ~t—k2 p¢ sin®g)® * (33)

kﬁ‘ in the limit in which k,p< 1, and
in the opposite case.

Thus, n(Zwe,
(2(;)2, (kgp)

The emissivity expressed in Egs. (32) and (33) admits
of relatively simple numerical analysis, and we display
the angular spectra of the ordinary and extraordinary
modes in Figs. 1 and 2 by plotting ©,(6) for 0<6 <w/2
and several choices of w,/Q, and w,p/c. As shown in
the figures, there is a quadrupole radiation pattern for
both the ordinary and extraordinary modes, which is
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FIG. 1. Plots of 6,(6) for w,/Q,=0.1, 10 and (a) w,p/c=0.1
and {b) w,p/c=10.

highly sensitive to the transverse scale size of the soli-
ton. Specifically, for w.,p/c > 1, the radiation is strong-
ly beamed in the directions parallel and antiparallel to
soliton propagation, and for w,o/c <1, peak emission

.0008 T T l T T I T T
{a)
2@ _ 01
L0006 (— ¢ .
% =10
e_1(0 e
.0004 |— —
0002 |- Le _ —
o 0.1
A 1 I 1 i 1 1
%0
6 {deg)
zm T T I T T I T T
{b)
weg
= =10
150 & = [ —
/Qe 10
o_ (o
100 © —
€ .
5. =0.1
50 |- _
N BT Lo
30 60 90

FIG. 2. Plots of 6.(6) for w,/Q,=0.1, 10 and (a) w,p/c=0.1
and (b) wyp/c=10.
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occurs for 6 <7/4. We note that for o, p/c <1, the
emissivity scales as 7(2w,, 6) ~sin’26 in the limit of
large®! »,/Q,. In Fig. 3, we plot 7.(2w,,8)/1{2w,, 8)
for parameters consistent with those used in the compu-
tations of Fig. 1. We remark that this quantity appears
to be relatively insensitive to p over the range studied
(i.e., 0.1 < w,p/c < 10), and we display the result for
wep/c =1. The principal results are (i) for w,/R,<1,
the ordinary mode tends to dominate the emission, but
that this situation is reversed when w,/Q,> 1 and (ii)
the characteristic dominance of either mode is greatly
enhanced for 9 =40°,

Finally, we observe that condition (31) is equivalent
to the requirement that W,/n,T, > 12(v./c)?, and it is
clear from Eq. (32) that in this limit, 7{2w,, 8) ~ W,.

In order to treat the case in which %k, < xy, we must
rely on wholly numerical methods. To this end we first
rewrite

372 (v, \*c? ( T)
== (Ze 2L ()
e, 6) =2 (22) Syt (14 1851) T (30)
and
487 \¥ (v, \¥c? T;\* @
n2a,,6) == Sy, (1+HH) PP, (35)
3 ¢/ we T, +
where
5 qinl £ 2 ©
Pil) EJ\I*Sln 9(;3:&511’1 9) {j dxxJo(Nthu'le)
(]
2 .2 2
x [exp (—-236—0-) +k*cc2>s 9]sech|:ﬁk*cos‘9 exp (ﬁc—)]
WeP Ko 2k WeP
(36)
and
N5 il il ©
PiZ)E ¢ S1N e(pp + S1n' 6) ‘1,2*(9){[ dxxJo(NQCSIHG)
0
Tk, c0S6 xc \11?
Xcsch[;——- ex (——)] . 37)
2k P WeP (

The dependence of the emissivity at w= w, on both 6 and
W, are contained in P{"*¥’| and it is these quantities that
we evaluate here. Note, again, that the condition re-
quired for the validity of Eq. (34) is that

GN*('Ue/C) > KO)\e~(W0/n0Te)1/2 B

and that N4~ | ne./ny | ~ Wy/nT, while N:~1, Thus, it is
difficult to satisfy this requirement for ordinary mode
waves, and we restrict the analysis to consideration of
the extraordinary mode emissivity at w =~ w, (no restric-
tion is necessary for emission at 2w,). It is the exis-
tence of an electromagnetic mode with frequency w=~ w,
and index of refraction N ~ 1 which constitutes a major
distinction between magnetized and unmagnetized plas-
mas,

We consider the case of emission at w= w, first, and
plot the results of the numerical integration of P!’ vs
Wo/n,T, in Fig. 4. It should be noted, again, that the
constraints on the analysis in this frequency regime are
that N{v,/c)> kyr.> r./p. In the results presented, we
chose T,=0.1 keV and w,p/c =10, which imply that p
~ 7152, and 1.4 x1073 S, $1.4X 10°%, For simplicity,
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FIG. 3. Plots of 7, 2w,, 8)/1_(2w,, 6) for w,p/c=1 and (a)

w, /R,=0.1 and ) w,/Q,=10.

we have agssumed that T; =0 in the analysis. It is clear
from the figure that the angular spectrum depends crit-
ically on both w,/§2, and the soliton amplitude, and that
no simple scaling law can be found between n{w,, ) and
Wo/n,T,. It should be observed, however, that while

increases in plasma density (i.e., in w,/$2,) leave the

scaling at low levels of soliton amplitude relatively un-
changed, the scaling of the emissivity with W,/#,T, and

-3
0 T ]

{a)

2o fadald

oot

L

100

10!

p('l)

1072

(b}

we/Q = 0.1 we/Q, = 10
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T,=0.1keV T, = 0.1 keV

Lty

L

Lol

—

1078

1074 1073

Wo/ngTe

107¢
Wo/n, T,

1073

FIG. 4. Plots of P! vs Wy /n T, for T,=0.1 keV, w,p/c=10,
and (2) w, /@, =0.1 and (b) wy /9y, =10.
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10'

T T
(b
we/Qy =10
wgo/c =10
T, =0.1keV

100 -

107"
p2

1072 L

tanul

sl 1070 L
1078 102 - 107!
W,/n,T,

FIG. 5. Plots of P!*) vs Wo/nyT, for T,=0.1 keV, w,p/c=10,
and (2) w,/8,=0.1 and () w,/Q,=10.

the angular spectrum of the emission are substantially
altered at higher levels of w,.

In Figs. 5 and 6 we plot the results of a numerical in-
tegration of P and P’ vs W,/n,T,, respectively. It
is clear from both figures that (i) as W, increases we
recover the result in Eq. (32) in which n,(2w,,6) ~ W,,
(ii) at lower levels of W, the emissivity increases fast-
er than W,, and (iii) the angular spectrum of the emis-
sion is sensitive to the soliton amplitude, We also ob-
serve that while the ordinary mode emissivity (i.e., P)
is relatively insensitive to the plasma density, the ex-

T T 10! T T

(a} b
we/ Qe = 0.1 we/Re =10
wee/c =10 wee/c =10 6=20°
T, =.1keV Te=.1keV
B g=40° ]

i L et

107 10

K 107!
W,/n,T,

FIG. 6. Plots of P! vs Wy/n,T, for T,=0.1keV, w,p/c=10,
and (a) w,/Q,=0.1 and (b) w,/Q,=10.
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traordinary mode emissivity is greatly modified in going
from w,/Q,=0.1 to w,/,=10. This can be explained by
noting that the emission is in the slow extraordinary
mode for w,/Q,=0.1 (i.e., the emission frequency is be-
low the upper hybrid frequency), and in the fast extra-
ordinary mode for w,/9,=10. This will have severe
consequences for the radiation observed from outside
the plasma, since slow extraordinary mode waves can-
not readily escape from the plasma without tunneling
through the upper hybrid layer or mode coupling to the
ordinary or fast extraordinary modes. Finally, we re-
mark that, as shown in (32), the angular spectrum of
the radiation and the scaling of 1,(2w,,8) with W, should
also be sensitive to the transverse dimension of the so-
liton; however, it is beyond the scope of this work to
treat this scaling in the regime in which k,> k.

IV. SUMMARY AND DISCUSSION

In this work, expressions have been derived for the
radiation of an arbitrary three-dimensional Langmuir
wave packet at w= w, and 2w, in a uniformly magnetized
plasma. The analysis of the radiation at the plasma fre-
quency has been limited to the regime in which the ra-
diation wavelength is much less than the scale length of
the soliton in the interest of deriving an analytic expres-
sion for the emissivity, which imposes the requirement
that 12(v,/c)*N% 2 Wy/n,T,. Since the only electromag-
netic mode in a field-free plasma with frequency w=> w,
has an index of refraction N%~W,/n,T,, this condition
imposes a severe restriction on the present analysis to
that of a very hot plasma. However, the presence of an
ambient magnetic field introduces an additional mode
with a mixed electrostatic/electromagnetic polarization
(i.e., the extraordinary mode) having an index of refrac-
tion of the order of unity in the vicinity of the plasma
frequency and which presents no such severe restric-
tion. While these waves cannot readily escape from the
plasma (unless some means of tunneling through the
upper hybrid layer or mode conversion to the ordinary
or fast extraordinary modes is possible) and should not
be an important characteristic of radiation from astro-
physical plasmas, study of this radiation mode may be
important in laboratory plasmas.5™°

In order to determine relatively simple expressions
for the radiation emissivity and, thereby, to determine
the angular spectrum of the emission as well as the
scaling of the radiated power with soliton amplitude,
the specific case of one-dimensional Langmuir solitons
has been studied in some depth. In this limiting regime,
it is shown that the angular spectrum is sensitive to
both the soliton amplitude and to the transverse scale
size of the soliton. While no simple scaling law between
the emissivity and the soliton amplitude is readily ap-
parent for w= w,, it is clear that for w ~ 2w, the emis-
sivity is linearly proportional to the soliton amplitude
when W, exceeds a certain threshold which depends on
the plasma density, the ambient magnetic field, and the
angle of propagation of the radiation. The immediate
significance of this result is to the scaling of the second
harmonic radiation in type III solar bursts.?
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APPENDIX: THE DISPERSION TENSOR AND
SOURCE CURRENT

The fluctuation fields giving rise to the emission are
of high order in V¢, and in order to treat emission at
w, and 2w, we must solve the equations

d

—_— V= ——F —yD), ) & x Al)
atﬁv meGE v w'’ +Q.e, Xov, (

a
vxéBr—l—bE 4ﬂe[(n0+6n)6v+(nm+6n) Wy (A2)
vxcE:-liaB (A3)

where 0E and 6B are the radiation fields, 6v is thehigh-
order velocity fluctuation, and »'*’ and v® are the first-
order density and velocity fluctuations. Note that on,
which describes the caviton structure, is itself of sec-
ond order in ¥¢. Thus, the term in 6n 8v is of at least
fourth order in V¢ and gives rise to the turbulent shift
in the plasma frequency. In addition, the term in dnv‘!’
is of third order in V¢ and is responsible for the oscil-
latory current at w,. In contrast, the terms giving rise
to emission at 2w, are of second order in V¢.

Eliminating 6B from this system of equations, we
find, after some straightforward manipulations, that

(—ff(kk—kzl) +1 —o)-GE(k,w)

m 4mie
z_e_g_c,,(v(l) R W(I))

+—(6n6v)k w

4me [ ©
_——waz-(a—t(n“) +6n)vm) Ew (A4)

_ _iw .
4nen,

where ( ), , denotes the Fourier transform of the en-
closed quantity,
2

)
W W
oxeUyy:(_-Z—e?—) ] 0'u=1_;;§' )

W =i,

and

dv(k,

-w‘“x,w), (A5)

i—-%)—gg-%— and 0, =0, =0, =0,,=0
w(w -Qe) ’ xg £x e zy 4

Opy= =0y =
In order to evaluate the convolution in ondv, we assume
a narrow spectrum of the form

Sv(k, w) = 6v(ky, wq) 6(k —=Ky)8{w ~ wg) -
It follows, therefore, that if 2> |V¢/¢ |, then

(6n6V)y, w = Ondvik,w). (A6)

Combination of (A4)-(A6) then yields Eq. (5), in which
the source current is

iw [m 4me
5J(k, w) :ﬁ[—e—-’io. (v(n . va)x. . _7

i
X (a—t(n(“ + 6n)v‘“> 5w ].
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The first-order density and velocity fluctuations sat-
isfy the equations

1)

ik +nv.vP =0 (A8)
and
e R ~
atv -—;n—;V¢ sinw,t + 2,8, xv? (A9)
The solutions to (A8) and (A9) follow immediately:
8 en Qz
n= —-;/;:’(;—( b + 92 Vl(i))Slnwef , (A10)
Qz
W _ [( ¢ + ZVL¢)COSQJ ¢
MW oWe ~Q
+—°ziﬁ—57(e X Vo) sine t] (A1)
e

Substitution of (A10) and (A11) into (A7) reproduces
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