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Abstract. In situ satellite observations of type III burst exciters at 1 AU show that the beam does not 
evolve into a plateau in velocity space, contrary to the prediction quasilinear theory. The observations 
can be explained by a theory that includes mode coupling effects due to excitation of the parametric 
oscillating two-stream instability and its saturation by anomalous resistivity. The time evolution of the 
beam velocity distribution is included in the analysis. 

1. Introduction 

The most fundamental  problem in the theory of type I I I  solar radio bursts is 

that of understanding the propagat ion of the exciter and its interaction with the 
background plasma. The quasilinear theory of the beam-plasma interaction 

predicts that the exciter would be decelerated near the acceleration region, 

relaxing to a plateau distribution in velocity space. That  such relaxation does not 

occur is shown clearly by particle observations at 1 A U  (Lin et al., 1973). This is 

not, of course, to say that there are no wave-particle effects on the beam 
propagation;  conservation of energy demands that some deceleration occur. 
At tempts  to explain the type I I I  bursts in terms of a locally relaxed exciter, 

however,  are generally contrived and unsuccessful when compared  with observa- 
tions. 

In an earlier paper  (Papadopoulos et al., 1974, hereinafter  referred to as Paper  

I) it was shown that in the paramete r  regime characteristic of the type I I I  exciter, 

the parametr ic  oscillating two-s t ream instability (OTSI) provides an effective 
mechanism for the spectral transfer, in k-space, of plasma waves from the linearly 
unstable beam-resonant  region to lower, nonresonant  phase velocities. The OTSI  
produces symmetric  spectra of plasma waves at both positive and negative phase 
velocities in the nonresonant  region, as well as purely growing (i.e., aperiodic) ion 
density waves. 

The object  of Paper  I was to demonstrate  that the OTSI  should be important  in 
the interaction of the exciter with the background plasma; to that end, the 
t rea tment  of Paper  I only considered the temporal  instability of a uniform beam. 
The beam-resonant  waves were considered as a monochromat ic  pump wave at 
k = 0; this is known as the dipole approximation.  Although it may be objected 
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that the linearly unstable spectrum is in fact composed of finite wavelengths and 
has some width Ak~--(AVb/V~) toe, it is shown in the appendix to Paper I and in 
subsequent work by Papadopoulos (1974) that the dipole approximation is valid 
for sufficiently large energy density in the pump, as long as the pump wavelength 
is very long compared with the Debye length. 

In this paper we report on recent work that extends the theory of Paper I. We 
consider the dynamic evolution of the velocity distribution function of the beam 
(at a fixed point in space) and the simultaneous evolution of the electrostatic 
turbulence spectrum. Knowledge of the shape of the turbulence spectrum is 
essential for computing the electromagnetic spectrum, for consideration of secon- 
dary particle acceleration, and for the question of the observability of the 
plasma-wave turbulence itself. The present paper is intended as a precis; a fuller 
exposition will be published elsewhere. 

2. Invalidation ot Weak-Turbulence Theory 

The necessity for strong-turbulence mechanisms in the beam stabilization is 
emphasized when we consider that the type III exciter is not a uniform beam 
pervading all space, but is injected for some finite duration into a half-space. In 
this situation, 'oscillation pile-up' occurs (Tsytovich, 1970); induced emission of 
plasma waves by freshly-injected particles is enhanced by the presence of the 
waves amplified by previously-injected particles. The oscillation pile-up is limited 
by convection of the waves away from the injection region. The asymptotic 
turbulence energy density for continuous injection is given by 

IfV~--(Vb~2nbmVbAVb, (1) 
\ v e /  

where Ve is the electron thermal velocity of the ambient plasma, Vb is the nominal 
beam velocity, A Vb is the spread in beam velocities, nb is the beam density, and m 
is the electron mass. The level r~ is an enhancement of order (VdVe) 2 of the 
asymptotic level predicted by quasilinear theory, and is reached over a scale 
distance from the injection point (x = 0) given by 

7b \ Vb/ n (2) 

where he is the electron Debye length and ~/= nb/ne << 1 is the density ratio of the 
beam to the ambient plasma. In the lower corona, X is the order of a few tens of 
meters, much smaller than the dimension of the injection region itself. Similar 
effects will prevail throughout the propagation region, because J( is everywhere 
smaller than the inhomogeneity length scale. Furthermore, Equation (1) shows 
that W/NeTe may be of order (VJVb) 2, and for such energy densities weak 
turbulence theory is invalid. Thus, we see that a strong mode-coupling mechanism 
is essential to stabilize the exciting beam. 



PROCEEDINGS OF THE WORKSHOP: MECHANISMS FOR SOLAR TYPE lII RADIO BURSTS 517 

3. Evolution of the Beam Distribution Function 

We have developed a semi-empirical model for the beam evolution at a fixed 
point, based on in situ observations of the exciter during type III bursts at 1 AU 
(Lin, 1972; Lin et al., 1973). Such a model is necessary because the propagation 
of the exciter in the corona and interplanetary medium is affected by pitch-angle 
scattering as well as by dynamic friction with self-induced turbulence and by 
natural dispersive effects associated with the injected distribution. In view of the 
disparity of length and time scales between macroscopic and microscopic 
phenomena, any attempt to model the beam evolution must resort to heuristic 
arguments. 

Lin et al. observed the differential energy flux of the beam electrons, rather 
than the velocity distribution itself. Furthermore, their particle detector was 
pointed southward of the ecliptic plane, and so accepted electrons with pitch 
angles roughly in the range 60~ ~ , because the magnetic field is predominantly 
in the ecliptic plane. A second detector, with less energy resolution, provided 
pitch-angle distributions with resolution of about 30 ~ (R. P. Lin, private com- 
munication). For purposes of our model calculations, we interpret the differential 
energy flux distributions observed by Lin as one-dimensional velocity distributions 
(i.e., integrated over perpendicular velocities). Some implications of this interpre- 
tation are discussed below. 

The parameters to be determined are r/, Vb, and A Vb, all considered to be 
functions of time. Lin et al. showed that the first particles of any given velocity to 
reach their detector all appeared to have traversed the same distance L after 
injection at a common time to. Because of perturbations in the magnetic field, L is 
always larger than the nominal distance associated with the underlying Archime- 
dian spiral field. Therefore at time t the slowest particles at 1 AU have speeds/3oC 
given by 

L 
/30 - c (  t -  to~" (3) 

The peak of the distribution is at Vb =/3oc+AVb. Empirically, we find that AVb 
can be well approximated by 

a Vb =/3oC[0(/3o)-- 1], (4) 

and so 

where 

AVb 
- - =  1 - -  1 / 0 ( / 3 0 ) ,  
Vb 

0(/30) = 1.4(1 + 0.075/30 + 0.085/32)(0.3//3o) ~ 

(5) 

(6) 

Equations (4) and (6) were found empirically from a sequence of particle spectra 
of the event of 16 May, 1971. As an independent check, the expressions were 
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matched against similar spectra for other events for which L and to were readily 
available, and agreed well in each case. It should be noted that the only parameter 
that varies from event to event in this scheme is L (c.f., Equation (3)). Therefore, 
these expressions probably contain some implicit description of spatial diffusion as 
a function of distance. 

To model T/(t), we note that the fully-evolved beam is a power law distribution 
in energy, f(E)~ E -U2. The corresponding one-dimensional velocity distribution 
is fo(v)-v -~. For example, the spectral indices if'in the events of 16 May, 1971 
and 28 February, 1972, discussed by Lin et al., were ~ = 4 . 6  and if= 10, 
respectively. (These are approximately the extremes of the range of ff in the many 
events so far observed [R. P. Lin, private communication].) By integrating the 
power law distribution for velocities greater than some defined minimum, say,/3, 
we obtain the normalization for fo; i.e., 

re(/3) = A(/3)/3 -~, 

where A(/3) is defined by the condition 

; d/3 fo(fl) fib 

Our procedure is to use the distribution function fo for /3/>/3b and to assume a 
ramp distribution for /3o -</3 -</3b. (Note that this implies that the peak of the 
distribution is at its fully-evolved value.) Thus, we take 

_ _Ifo(/3)=fib~(~//3)~, /3~--/3b; 

f(/3) ( f1( /3)- - r  ~o ~ (/3--/30) (7) 
- . , . b  , /3o -< /3 -< 

The instantaneous beam density in the model is thus given by 

J, dfl fo(/3) nb(t) = _Jso(O d/3 f1(/3) + 
[3b(t) 

-= ~ (8)  

where n~ 1) and n~ ~ are the contributions from fl and )Co, respectively. In accord 
with equation (7), the intensity growth rate Tb of the linear beam-plasma 
instability is taken to be constant over the range of phase velocities/3o<~ Vr <-/3b 
and equal to zero elsewhere. In the unstable region, % is given by 

{ 
%(t) = ~ ' ~ l ~ - - J  w,, (9) 

where O~e is the electron plasma frequency and ~/1-= n~l)/ne. 
We may inquire into the plausibility of interpreting the differential energy flux 

as a one-dimensional velocity distribution f(u), where u = v~. The fact that the 
particles observed by Lin have large pitch angles o~ necessarily means that the 
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one-dimensional f will contain low velocities, i.e., u----v cos a where cos a is 
small. In principle, the distribution may even fill in to u-<O. Throughout the 
event, however, the exists anisotropy in the pitch-angle distributions, and this 
anisotropy is particularly marked early in the event and for a considerable time 
thereafter. It may easily be shown that if dj/dE df~ is of the form 

dj _ AE_~/2G(Ix)H(E_Eb) (10) 
dE dl) 

(where Ix = cos a and gyrotropy is assumed, and H is the Heaviside step function), 
then the one-dimensional distribution f(u) is given by 

f(u) = const. I ~ dv v-r (11) 
J x  

where 

A={u (u>-vb) 
vb (u < v.) 

and Vb = (2Edm) 1/2. Our assumption that f ( u ) - m ( d j / d E )  amounts to assuming 
that G(IX) is sharply peaked near Ix = 1. If G(Ix) is expanded in Legendre 
polynomials, it may also be shown that the peak of f(u) is preserved at u = Vb, 
while the slope for u <  Vb depends on the relative weights of the various 
Legendre polynomials in G(Ix). (This part of the discussion does not consider the 
contribution from the particles at E<Eb . )  As an example, we note that if 
G(Ix) = (I+Ix)/2,  we have the distribution shown in Figure la while if G(Ix) is 
dominated by higher-order odd polynomials, f(u) may be as schematically de- 
picted in Figure lb. Although the pitch-angle distributions provided to us by Lin 

(a) 

J 

F(v) 

(b) F(v) 

v 
Fig. 1. Schematic of the projected beam distribution function f(u) for (a) weak anisotropy, 

(b) strong anisotropy. 
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are difficult to model analytically owing to lack of resolution, we feel that Figure 
lb provides a closer picture of the distribution. Thus, we have simply approxi- 
mated the steeply rising part by a ramp that goes to zero at u = Vo, as mentioned 
above. Although this is clearly a model, we do not feel that the present data 
justify a more elaborate treatment. 

4. Evolution ot the Plasma-Wave Spectrum 

Our program is to model the temporal development of the turbulence spectrum at 
a fixed point. Because the distance J( is so short, ranging from less than 1 km in 
the lower corona to about 3000 km at 1 AU, the effect of oscillation pileup is 
essentially accounted for by including the temporal evolution of the beam which is 
assumed injected at x = 0 and evolves at x = L according to the model described 
above. The processes affecting the spectral evolution are the linear beam-plasma 
instability, Landau-damping in the non-resonant region of phase velocities, the 
OTSI, and the enhanced absorption (scattering) of plasma waves owing to the 
development of high-frequency anomalous resistivity. We neglect the decay 
instability, which has a threshold equal to that of the OTSI but a smaller growth 
rate. 

The OTSI has been discussed in Paper I and by Nishikawa (1968a,b), 
Sanmartin (1970), and Papadopoulos (1973, 1975). In the usual treatment, based 
on the dipole approximation in which the pump at frequency ~o is spatially 
uniform (ko = 0), the driven modes are at finite wave-numbers Ikl > 0 and include 
a purely growing ion density fluctuation and an electron plasma wave, the 
normal-mode frequency of which is given by the Bohm-Gross dispersion relation 
Wek =(~o~+3k2V~) 1/2, but which is frequency-shifted in the OTSI to match the 
pump frequency. Papadopoulos (1973, 1975; c.f., also the appendix to Paper I) 
extended the theory to the case of finite wavenumbers in the pump spectrum. The 
resulting treatment is a generalized one that includes the modified decay and 
modulational instabilities. In the limit that the dipole approximation may be 
employed, the modulational and OTS instabilities are equivalent, and we shall use 
the designation OTSI in a generic sense. 

The threshold amplitude of the pump and the growth rate of the OTSI are 
governed by the frequency shift 6 = ~0o-Wek between the pump and daughter 
modes (note 6 <0  for the OTSI). In the case of a finite-wavelength pump, the 
dispersion relation involves a convolution integral over the pump spectrum. In our 
treatment here we employ a limiting prescription, in which we use the form of the 
dispersion relation for the dipole pump, but include the effects of finite pump 
wavenumber k by using the Bohm-Gross frequencies for both pump and daughter 

waves: ~ = r - -  OJek,. 

Neglecting the collision frequencies compared with 8, the OTSI threshold is 
given by 

WT-- E~- = - 2 6 [ ( 1 +  3k,2Ae2)1/2 ~e ] (12) 
8~rneTe ~oe k 
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while the growth rate for any value of W is given by 

2 k 1 , k ' )  = (o,2+ 

1 {(w~+ 62)2_ 4620)2[ 1 _~ W(k) ]]1/2, 
+2  2~(1 +3k2X2e)lnjj (13) 

where the first argument denotes the driver wavenumber, the second denotes the 
daughter wavenumber, and 

m , 2 2  2 2 

where M is the ion mass. 
The second mode-coupling mechanism we include is that of dissipation of 

long-wavelength waves to shorter-wavelengths owing to high-frequency anomal- 
ous resistivity. In the initial stages of the spectral development of the electrostatic 
turbulence, the linear beam-plasma instability creates a pump spectrum of waves 
resonant with the beam particles; when the pump amplitude exceeds the OTSI 
threshold, the OTSI at first becomes the dominant mechanism of spectral energy 
transfer. The growth via OTSI of nonthermal ion-density waves, however, leads 
to the development of anomalous resistivity (Dawson and Oberman, 1963). In 
speaking here of 'dissipation', we mean only the scattering of waves and not 
heating of the plasma. The ions are treated as fixed and hence" do not constitute a 
momentum sink; heating effects are of order m / M  compared with scattering. 
Averaging over the positions of the ions in the nonthermal density waves, 
however, yields some disordering of the motion of the electrons in response to the 
applied field. Hence there is 'dissipation' in the sense that electron energy is 
conserved but appears in disordered motion which when Fourier-analyzed contri- 
butes to the wave spectrum at higher wavenumbers. Denoting by S(k)  the 
normalized energy density in ion density fluctuations at wavenumber k, the 
scattering by these waves is manifested in a nonlinear damping rate 7uL(k) given 
by 

S(k)  
~NL(k) ~ ~ o)e. (14) 

k X~ 

Two other phenomenological damping coefficients are included in the computa- 
tions. The first, denoted by yell, describes Landau damping of non-resonant 
plasma waves on the high-energy tails in the solar wind electron distribution, and 
is modelled by 

= , ( 1 5 )  

where ~h is the density fraction of the tail population, which is assumed to be 
given by a power-law distribution f ( v ) ~  v -~ for velocities greater than ~oe/kt. The 
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role of yen is to provide an ultimate sink as the spectrum evolves down to very low 
phase velocities, but it is not dominant during most of the evolution. 

The second, and more important, damping coefficient is that of the ion-density 
fluctuations, which we designate by vs. This rate is simply taken to be the trapping 
width of the density waves, in the Dupree-Weinstock sense, and is given by 

/ / m ~  1/2 2}k2 1/4 
Ek eS(k)l (16) 

The various growth rates %, ~//OTS, "YNL, /)eft, and vs, given respectively by 
Equations (9), (13), (14), (15), and (16), are interpreted here as a set of 
(phenomenological) transfer coefficients that enable us to describe the evolution 
of the turbulence spectrum by a set of rate equations. To do so, we re-write the 
energy densities W(k) and S(k) in terms of plasmon and phonon number 
densities, which are denoted by P(k) and A(k) respectively and are defined by 

W(k) = P(k)h~oek/neT~, 

S(k) = A(k)hwAk/neTe; 
(17) 

here waK=-(m/M)a/2kVe. (The definitions (17) are purely conventional; the 
reason for defining them will become clear below.) Furthermore, it is useful to 
present the results of the computations in phase-velocity space, rather than 
k-space, in order that we may picture the beam and the turbulent spectrum 
evolving in the same phase-space. There is, of course, a one-to-one mapping 
between k-space and phase-velocity space at fixed value of ~o~. It is probably 
clearer, however, to write down the rate equations in k-space. Using Equations 
(9), (13)-(17), the rate equations are written separately for plasma waves at 
positive and negative phase velocities; the ion density waves are non-propagating, 
however, and so Ak = A+k +A-k.  Thus, defining all k's to be positive, we have 
three rate equations describing the spectra of ion-density fluctuations, forward- 
going and backward-going electron plasma oscillations, respectively: 

= 7OTs(Pk') + 7OTs(P-k')]--vs(k) Ak' (18) 
dt k'<k 

dPk 
- [ % ( k ) -  ven(k)]Pk- ~ 7OTs(Pk)Ak' 

dt k'>k 

k ' < k  
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+'YNrC--k) ~', P-k' 
k'<k 

--  E "YOTs(Pk)Ak'  
k '>k 

523 

(20) 

In Equations (18)-(20), we have suppressed the wavenumber arguments of YOTS, 
indicating the driving mode by its amplitude. The liberal use of square and curly 
brackets is to emphasize the structure of the transfer coefficients. 

Equations (18)-(20) are written for arbitrary wavenumbers, and it is clear that 
in general only a few of the various coefficients are nonzero for any particular 
wavenumber at any instant. Moreover, it may clearly be seen from Equations (19) 
and (20) why we must write the equations in terms of number densities rather 
than energy densities. We recall that the OTSI dispersion relation, neglecting 
collisions, is (of. Paper I, Equation (A5)) 

(0 j2 - -  W 2 ) - b ~  f d k ' W ( k ' )  (9/4)c~162 
neMAe (9/4)~o2(kAe) 4 -  [oJ - 3wekk'A 2] 2 = O. 

The solution w of this dispersion relation is for the low-frequency normal mode 
and in the dipole approximation yields the purely-growing ion-density wave. 
Therefore, the OTSI is induced by the level Ak. Owing to the inclusion of mode 
coupling by anomalous resistivity (through 7No), however, Ak and P~ may differ. 
Thus. for example, the second and last terms on the RHS (19) must be written in 
terms of A~ and Ak, respectively, in order to balance the equations correctly. 
Similar cor~siderations apply to Equation (20). 

The system of Equations (18)-(20) are solved simultaneously for several modes. 
In practice, we use finite increments of 0.01c in phase-velocity space, and 
integrate the number densities over these finite increments. Typical results are 
shown in the time sequence of Figure 2. We see that once the OTS threshold is 
reached in the resonant region, there is a rapid transfer of energy to lower phase 
velocities, resulting in buildup of ion-density fluctuations and the consequent 
dumping of energy out of the resonant region even below the OTS threshold. This 
latter effect is of paramount importance, because the OTSI itself cannot reduce 
the turbulence levels in the resonant region below the threshold values. If such 
levels are allowed to persist in the resonant region for times of the order of the 
time scale over which the beam evolves, the relaxation effects on the beam 
distribution would be significant. Relaxation is not dominant, however, precisely 
because the dynamic evolution of the beam at any point occurs on a longer time 
scale than that required for the cascading of the plasma-wave energy to non- 
resonant phase velocities. 
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Fig. 2. T i m e  sequence  of t u r b u l e n t  ene rgy  dens i t ies  du r ing  evo lu t i on  of the  b e a m  at  1 A U .  The  
u n s h a d e d  h i s tog rams  co r r e spond  to e l ec t ron  p l a s m a  osc i l la t ions ;  the  s h a d e d  h i s tog rams  r ep re sen t  
the  ion dens i ty  waves .  The  b e a m  p a r a m e t e r s  are  -o(E --- 1 keV)  = 2 • 10 -6, ~ = 4.6, c o r r e s p o n d i n g  to  

the  e v e n t  of 16 May,  1971.  The  sol id  ba r  d e n o t e s  the  uns tab le  r eg ion  w h e r e  Of/Ou > O. 
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5. Summary and Discussion 

We have extended the theory of Paper I to formulate detailed calculations of the 
simultanious temporal development of the type III exciter and its accompanying 
spectrum of electrostatic turbulence at a given point. Our numerical computations 
have been done for parameters appropriate at 1AU; calculations for coronal 
plasma levels will be presented elsewhere. We have used a limiting form of the 
dipole approximation; if the growth rate ~'OTS is greater than the frequency spread 
Ato of the pump spectrum, the theory may validly be taken to this limit, in which 
the OTSI and the modulational instability become identical. From the general 
discussion of the model of the beam evolution, and in particular from Equation 
(9), it is seen that we do not treat in detail the interaction of neighboring modes in 
the resonant region. Therefore although the rate Equations (18)-(20) are integ- 
rated on the fastest time scales in the problem, namely -1 -1 3'OTS and ~NL, the results 
are expected to be valid in detail only when averaged over the slow time scale 

--1 "Yb �9 

We close with some remarks on the relation of the theory to observational 
results from IMP-6 during times when the satellite is clearly within the region of 
type III bursts at 1 AU. 

The first result, reported elsewhere in this issue by Kellogg (1976) and Gurnett 
and Frank (1976), is that plasma-turbulence levels such as seem to be requisite for 
the theory (viz., W - 1 0  -5) are not observed; the highest levels observed are of 
order W -  1 0  -9 .  Because all the instabilities involved in the theory (including the 
linear instability) are phase-coherent, however, it is plausible to suggest that the 
collapse of the turbulent spectrum to high wavenumbers, of spectral width Ak, is 
equivalent to a spatial collapse to a characteristic dimension AX-(Ak)  -1. The 
initial coherence length of the linear beam-plasma instability is the order of the 
wavelength A -  2~rVb/tOe- 1 km. Our calculations indicate that AX-102m;  thus 
AX/A <~0.1. For any instrument such as those of Kellogg and Gurnett, which 
sample the medium for some finite integration time r and which make direct 
measurements of power (and therefore energy density), the ratio of measured 
energy density to the actual energy density in collapsed wave packets is of the 
order of the ratio of the volume of the wave packets to the sampled volume*, and 
s o  

Wpacke t ~--- ~ 1 0  -3 .  

Such collapsed wave packets have recently been observed by Wong and Quon 
(1975). Theoretical treatments of such wave packets have recently appeared in 
�9 An  alternative suggestion has been Offered by M. C. Kelley (private communication),  who noted that 
photoelectrons from the satellite may s t ream along magnet ic  field lines in the solar directiofi and 
increase the electron density so that the local p lasma frequency ups t ream on the flux tube of the 
satellite is enhanced over the  daughter-wave frequencies, reflecting the waves away from the satellite. 
We  do not  yet know if this effect is quantitatively adequate.  
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the literature; where they are referred to as "spikons" or solitons. As was shown 
by Manheimer and Papadopoulos (1975) these are the configuration-space man- 
ifestation of the OTSI. Morales and Lee (1974) investigated the acceleration of 
electrons by such localized electric fields in the Born approximation; this is the 
quasilinear limit of the OTSI, corresponding to the asymptotic regime discussed in 
Paper I and by Papadopoulos and Cottey (1974), in which tails are drawn out of 
the thermal-plasma velocity distribution. Particle acceleration has also been 
treated by Bezzerides and DuBois (1975), who used quasilinear theory to describe 
the particle acceleration. 

The second observational result we shall discuss is the relation between the 
brightness temperature Tb and the particle flux j (Lin, 1975; Evans et al., 1975). 
The rate of change of Tb with j increases from Tb ~ ] below a certain critical flux, 
to Tb _j2.7 above the critical flux; the break is fairly sharply defined. We suggest 
that the break occurs when the OTSI threshold is exceeded. The electromagnetic 
radiation from type III bursts observed in situ is well known to be at the second 
harmonic, ~o-~ 2(o,. Such waves are produced by the coalescense of two plasma 
waves with nearly oppositely-directed phase velocities. Before the onset of the 
OTSI, backwards-propagating waves must be scattered from density fluctuations, 
and this is relatively inefficient. The OTSI, however, creates symmetric spectra of 
forwards- and backwards-propagating waves, and so a small efficiency factor in 
the emissivity is replaced by a factor of unity. To investigate this assertion, we 
have run our program for the beam parameters in the two cases in which a break 
in the Tb vs ] curve is clearly evident, and we find that the OTSI is first triggered 
when the particle fluxes are approximately equal to the observed critical fluxes in 
each case. As Thoreau (1850) said, "some circumstantial evidence is very strong, 
as when you find a trout in the milk." 
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Discussion 

D. Smith: The interaction involves two ES pump waves, a resultant plasma wave and a zero 
frequency ion sound fluctuation. 

Arons: Do you neglect convective effects? 
R. Smith: Yes. 
Hudson: Are you saying that the zero frequency ion mode forms a soliton which traps and 

localizes Langmuir oscillations? 
R. Smith: Yes. 


