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In a recent rocket experiment Reasoner and Chappell 
[1973] measured energy spectra and pitch angle distribu- 
tions in auroral arcs at altitudes of 600-700 km. The most 

striking feature of the data was the existence of power law 
continuous electron energy spectra between 40 eV and 2.0 
keV. In this energy range they observed a backscatter ratio 
of 1. At still higher energies they observed an energetic peak 
(Figure 1). 

This letter discusses a physical mechanism that can 
account for the observed particle spectra and the high 
backscatter ratio. This mechanism is a consequence of the 
existence of high-energy electron bursts frequently observed 
in the auroral arcs [Reasoner and Chappell, 1973; O'Brien 
and Reasoner, 1971]. The only requirement of the proposed 
model is the existence of high-energy beamlike bursts with 
a drift velocity component along the ambient magnetic field. 
We do not concern ourselves here with the mechanism that 

creates such bursts, but we simply assume that they were 
formed at a much higher altitude. 

This letter constitutes a preliminary presentation of the 
model, with emphasis on the physical processes involved. A 
more detailed quantitative analysis will be presented else- 

.. 

where. 

QUALITATIVE DESCRIPTION OF THE MODEL 

Consider first a high-energy electron burst whose com- 
ponent along the magnetic field has a velocity Vb and a 
thermal spread A Vb (Figure 2). The system of part a of 
Figure 2 is linearly unstable to waves ek, (Figure 2, part b) 
in the region of phase velocity V2 _• v•h _• V•, the frequency 
being approximately equal to the background plasma 
frequency co• and the group velocity (vgr,•., (V•/V•)V•) being 
very low. According to quasi-linear theory these waves grow 
in a fashion such that W1/«m•mV•AVb • 1, where W1 = 
2•ek,, and will fiatten the beam within times of the order of 
(n•/n•)co,-• [Davidson, 1972]. However, if one considers 
nonlinear effects, the picture is radically modified. Consider 
each of the unstable waves as an external driver wave. One 

finds that for the parameters relevant to the auroral regions 
the threshold for excitation of parametric instabilities is 
exceeded before the beam can stabilize quasi-linearly. Since 
the frequency of the driver waves is just below the plasma 
frequency co,, the relevant parametric interaction is the 
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oscillating two-stream instability. This instability produces 
purely growing ion fluctuations and electron waves that 
travel parallel and antiparallel to the driver wave with phase 
velocities on the region V1 _• Iv•hl _• V2 (Figure 2). In this 
way, wave energy is transferred out of region I into regions 
2 and 3 (Figure 2), and the beam can be stabilized against 
quasi-linear diffusion. These new waves are in resonance with 
the tail end of the background electron distribution function 
and can therefore produce energetic tails (Figure 2), whereas 
the driver wave decays to a much lower level. When the 
Landau damping due to these tails exceeds the growth of the 
instability, the system reaches a marginally stable nonthermal 
quasi-equilibrium that can be altered only by Coulomb col- 
lisions. In this way, proper consideration of nonlinear plasma 
effects results in electron distributions having (1) an energetic 
component with AV•/V• • 1; (2) symmetric heavily popu- 
lated tails, which can give a backscatter ratio of unity; and 
(3) a number density larger in the tails than in the beam. 
Such features have frequently been observed in the auroral 
regions. It is important to note that the physical processes 
described above have been observed 'clearly in a particle 
computer simulation experiment [Kainer et al., 1972; Thode 
and Sudan, 1973]. 

QUANTITATIVE ESTIMATES 

A detailed quantitative description in three dimensions 
will be published elsewhere. In order to be consistent with 
the purpose of this letter we shall make some quantitative 
estimates by applying the proposed model to the auroral 
regions. We concentrate on one-dimensional considerations 
parallel to the magnetic field, although we will later re- 
mark on the accuracy of our results with respect to data 
for pitch angles • • 60 ø. 

The basic equations describing the system of Figure 2 
are as follows (the exact set of equations should include 
explicitly the mode coupling terms, which cause energy to 
cascade from high- to lower-phase velocity modes; however, 
for the physical picture that we present we replace them by 
an equivalent growth rate type description)' 

1. In the region V• _• v _• V•, V• _• v• _• V•, 

(f O-• f•' -- rn at, ov / (1) 

ot 

2. In the region V• •_ [v[ _• V•, V• •_ v,• _• V•, 
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Fig. 1. Incident (solid line) and backscattered (dotted line) 
electron energy spectra [after Reasoner and Chappell, 1973]. 

0 

0-• ek,(t) = 2%,(e•,)e•,(t) -- reflect(t) (3) 

o t) - - - oi} (4) m Ov ' Ot / 

where •f is the sum of the collisional and collisionless 
damping rates. 

3. In the region 0 • Ivl • v•, 0 • Iv•l • v•, the 
behavior of waves and particles is assumed to be adiabatic. 

In the above equations, f, is the distribution function of 
the beam, and f•(v, t) is the taft end of the ambient Max- 
wellian distribution of electrons (Figure 2); that is, 

t) = 0 5 

[•(v, t) = [n•/(2r) •/• V,] ß exp --(v•/2 V• •) Ivl • v• 
where the value of V•, to be determined later, represents the 
phase velocity of the last unstable mode due to the oscillating 
two-stream instability. The subscript k• refers to waves 
resonant with the beam (V• • v• • V,), and T•, is the 
growth rate of the beam plasma instability [Davidson, 1972]. 
The subscript k• refers to waves nonresonant with the beam 
(V• < v• < V•), and %•(e•) is the growth rate of the oscil- 
lating two-stream instability [Nishikawa, 1968]. Notice that 

-•/2 -v2 o v, , ya 
ß ' i --v----- • I 

I e I " I Ek I E k. I (b) 

,, i, I ,, i 
', • • --'ph• I 
', /',• • 
•/ ;Xl I 

Fig. 2. Velocity and field energy distributions: a, Initial 
velocity distribution functions of the beam and the plasma 
electrons; b, wave spectrum in phase velocity space; region 
I is the region of the growing waves due to the beam plasma 
interaction; regions 2 and 3 are the regions of spectral energy 
transfer due to the oscillating two-stream instability; and 
c, final marginal stability state of the beam and the plasma 
electron distribution functions. 
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in a numerical solution of these equations the separation of 
regions 1 and 2 is not necessary. One can replace f•,(v) in (4) 
by the total background distribution function of the electrons 
[, and proceed to solve the equations. However, since here 
we are interested, more in the physical clarity of the inter- 
actions, we separate regions 2 and 3 to show that the dominant 
resonant interaction is with very few particles at the tail, 
whereas the rest of the distribution interacts nonresonantly 
and remains essentially adiabatic for the wave energies 
under consideration. 

A numerical solution of (1)-(5) will be the subject of a 
forthcoming publication. In order to find some numerical 
estimates relevant to the aurora we proceed and introduce 
the following simplifications. 

We replace (2) and (3) with 

a/at = - 2(wJ (6) 

a/at = 2•2(w1) w2 - •eff W2 (7) 

where W• = •e•, W• = •,e•,, and theT•.• are the average 
growth rates of the instabilities. For the weak beam plasma 
interaction, 

• • (r/2)w•(no/n•)( Vo/A Vo) •(8) 
The value of y• is given by the theory of the oscillating 

two-stream instability [Nishikawa, 1968; Sanmartin, 1970]. 
Thus y• -- 0 for wave energies W• below the instability 
threshold given by 

2 

Wt•/•n•mv• = 4Yeff/W• (9) 
For values of W• much larger than W• the value of y• is 
given by 

= (10) • 2 d] 

whereas for W• very near threshold 

= 
where • is the ion acoustic frequency and M is the ion 
m•$8. 

The wlue of V• can be determined from (9) by replacing 
•,• by the collisionless damping due to the ambient M•x- 
wellJan electrons. Thus 

4(•/•)•(•/•?) •xp --(•?/• •?) = (W•/•n•m W) 
(•) 

The basic features of the physical behavior of the system 
can be found by inspection of the above equations supple- 
mented by the fact that the wave energy W• is bracketed 
by W• • n•mV•AV•. Since we would like to compare these 
estimates with observations, we consider •s typical •uroral 
wlues at 750 km the following' For the •uroml plasm• we 
take the electron density to be n, - 2 X 10 • cm -*, the 
electron thermal velocity to be V, -- 3 X 10 • cm/s, •nd 
the electron-ion mass ratio to be m/M • 10-'. For the 
electron bur• we take n• -- 2 X 10 -• cm •, the component 
of streaming velocity along the magnetic field to be V• 
6 • 10 • cm/s, and the thermal spread to be AV• • VaV•. 
These values correspond to a peak of 10 keV and a particle 
flux of the order of 10 • el/cm • s. We examine next the various 
predictions of the model. 

Stabilization of the bea, m ag&nst quasidinear di•z•ion. 
From (1) and (2a) or (6) we notice that the beam w•l 
be stabilized against quasi-linear diffusion when more energy 
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is transferred out of the resonance region than is generated we can say that 
by the beam. This happens when .e -- '%/7,2 << 1. A more 
exact condition is [Papadopoulo.s et al., 1974] IT(v) = A(1/v") 

e In e[W•/W•(t- 0)] • I (12) 

Using the fact that W• _• m•mV•AV• and equations 6 and 
8 and taking thermal noise for W•(• -- 0), we find that the 
beam will be stable against quasi-linear diffusion if 

(n•/n•)•/•( V•/A V•)•/•( V•/ V•)•/•(M/m) •/• 

• 10-2(km2kd2) 1/s (13) 

where k• is the wave number with the maximum growth rate 
for the parametric instability (k•M • 0.1 -- 0.2). For the 
typical values quoted, (13) becomes 

A V•/V• • 5(n•/n•) •/• (14) 

and for AV•/V• • • and n• • 2 X 10 -• we find that the 
beam will k•p its structure for n• • 2.6 X 10 • cm% which 
is certainly satisfied at 750 • or below. 

Time Jot tail Jormation. For cases where (14) is satis- 
fied, the transfer of energy in the region k• will cause the 
resonant particl• in J• to spread according to (4). The 
time scale for this to occur is given by 

t • •/[(S•e•/m•)(•/5•)] (1•) 

Using A• • •, W• • n•mV•AV•, and v • 10V•, we find 
that t • 10 -' s. Even if W• is 2 orders of magnitude smaller, 
the time for tail formation is very fast with respect to the 
observation times. One can therefore expect that tails will 
be formed almost instantaneously. 

Lower velocity bound of the power law tails. From (11) 
using the fact that W• • n•mV•AV• and the typical values 
quoted above, we find that the low-energy bound is given 
by V•/V• • 3. This value corresponds to deviations from 
MaxwelSan for energies much higher than 5 eV. 

Ta• number density. The tail number density can be 
found directly by integrating the ambient Maxwellian from 
V• to infinity; namely, 

ne _ 2 I exp - (V•/2 V• •) 
n• (2w) 1/• (V•/V•) 

For V•/V• • 3 and n• • I X 10 • this equation gives a 
value of n• • 1. 

Tail power law. Since all the time scales discussed above 
are much smaller than the burst duration and the observa- 

tion time, we expect that a quasi-steady state will be estab- 
lished, so that in an average sense the beam plasma and 
the parametric instability w•l be marginally stable. The 
existence of the tail can stabilize the parametric in•ab•ity 
by increasing the Landau damping in the region (V•, V•) to 
balance the growth at each unstable wave number (see equa- 
tion 7). The Landau damping, due to an arbitrary tail 
distribution f•, is proportional to v• av• fd (v•), whereas 
the growth rate as given by (10a) and (10b) is either 
proportional to l/v• TM or independent of the phase veloc- 
ity, depending on whether the fields are much larger than 
threshold or not. Since in order to establish • marginal 
stability state, [7•(v•)/v• (v•) ] • 1, we can determine 
the velocity dependence of f•. Depending on whether we 
use (10a) or (10b) for the gro•h rate we find either that 
f•(v•) • 1/v• -•/• or that f•(v) • 1/v. More generally, 

3Ve _• v _• Vb (16) 

/•,(v) = 0 elsewhere 

where A is a normalization factor. 

Particle flux. From (16) we find that the energy de- 
pendence of the directional differential flux is given by 
F • 1/E "/=, which fo.r I <_ n <_ 5f3 is in excellent agree- 
ment with the data. Most striking is the fact that use of 
the value of n• ~ I for the number of particles in the 
tails gives excellent agreement with the measured flux 
magnitude. 

High-frequency electric fields. In the marginal stability 
state (Figure 2) the electron tails stabilize the parametric 
instability. Thereafter, the beam plasma instability should 
resume unless the electric field energy in the region of the 
tails is large enough to make the right-hand side of (2) zero 
or negative. Using (2) and (10b), we find that the supra- 
thermal level of fluctuations at toe must satisfy 

W•./«nmVe' •_ 4(nb/n•)(Vo/AVo) •' (17) 

Actually, the value of W2 will be given by (17) or the 
equilibrium suprathermal level due to the tails, which is. of 
the order of (Vb/Ve) 2 above the thermal noise. These high- 
frequency electric fields can be measured either directly by 
rockets or indirectly by enhanced radar scattering. 

Extension to more dimensions. The beam plasma inter- 
action is strongest along the direction of the beam, whereas 
the parametric instability grows mostly in the direction of 
the pump waves. However, waves at an angle can grow. 
The growth rates fall off as cos = 0, where .0 is the angle 
between the pump field and the wave. These waves will 
produce heating in the transverse direction. A detailed 
analysis in more dimensions will be presented soon. Here 
we remark that for fluxes at an angle 0 the basic features 
of the results will be like th•ose in our one-dimensional 

analysis, whereas the numerical estimates will be correct to 
within a factor of cos 2 O, which is less than 4 for 0 < 60 ø. 
This finding has been verified numerically by Kruer and 
Dawson [ 1972 ]. 

Anomalous resistivity. Since the parametric instability, 
besides producing the electron plasma waves, also produces 
purely growing ion density fluctuations, we expect the 
resistivity of the auroral plasma to be modified. In a sim- 
pleminded way one would expect that [Sn,[•/ 
W2/W,t•, which is given by (17). We would therefore 
expect an anomalous resistivity larger than the collisional 
one by a factor of (Vb/V•)' or 4(n•/n•)(V•/AV•) ø, 
whichever is larger. This gives an enhancement by at least 
10 '. Of'course, this is valid only on the assumption that 
the ion density fluctuations do not damp. A detailed 
examination of the question of an'omalous resistivity is 
presently under study. 

CONCLUSION 

It has been proposed that the nonlinear plasma inter- 
actions that stabilize the instability between ambient and 
precipitating plasma electrons can account for several of 
the observed nonthermal features .of the auroral plasma. 
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Comparison of the measurements with the theory shows 
very good qualitative and quantitative agreement. 
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