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Large scale chaotic motion of charged particles in a 
longitudinal electrostatic wave 
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Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, 
USA 

Received 4 July 1983 

Abstract. The large scale chaotic motion of a charged particle in a homogeneous static 
magnetic field and a longitudinal electrostatic wave is discussed. A formula for estimating 
the stochasticity threshold qhr of the wave amplitude from the wave frequency v and the 
propagation angle cp is proposed. For cp = n/2 and cp = n / 4  this formula reduces to known 
results for these special cases. It is shown that the essential characteristics of the cp = n / 2  
case persist for angles n / 2  > q > n/3.  

1. Introduction 

It is, by now, a well established fact that the majority of time independent Hamiltonian 
systems with more than one degree of freedom possess trajectories that can be classified 
by their behaviour in phase space as ordered or  disordered (chaotic), and that the 
same type of system may behave sometimes as integrable (with ordered trajectories 
and regular invariant curves reflecting the foliation of phase space) and sometimes as 
non-integrable (with chaotic trajectories and ‘dissolved’ invariant curves), depending 
on the value of a parameter that measures the relative strength of the nonlinear force 
(Helleman 1980). Early papers (e.g. Contopoulos 1963, Henon and Heiles 1964) 
concentrated on the ordered, quasi-integrable aspect of dynamical systems. More 
recently, after ideas on nonlinear dynamics and on generic non-integrability had been 
more or less crystallised, the interest shifted to the systematic investigation of the 
chaotic aspect of dynamical systems. Plasma physics is a particular field where the 
transition to chaos by various nonlinear processes received extensive attention (Treve 
1978, Lava1 and Gresillon 1979). Since wave-particle interactions most often control 
nonlinear plasma behaviour, the nonlinear interaction of a single charged particle with 
a large amplitude wave is of paramount importance. It is the purpose of this paper 
to address some aspects of the large scale chaotic motion of a charged test particle in 
a homogeneous static magnetic field and a longitudinal electrostatic wave. This 
dynamical system is characterised by three dimensionless parameters, the wave ampli- 
tude a, the wave frequency v and the propagation angle of the wave (with respect to 
the magnetic field) cp. Notice for future reference that if any of these parameters is 
zero, the system becomes integrable and does not possess chaotic trajectories. In the 
rest of this paper we consider only systems with v >> 1. 
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Particular cases of this problem already diszssed in the l i tzature  are the cases of 
oblique and perpendicular wave propagation (kB, ,  = ~ / 4  and kB,, = 7 ~ / 2  respectively). 
The first case was discussed by Smith and Kaufman (1975,1978) and the second by 
e.g. Karney and Bers (1977), Fukuyama et a1 (1977), Karney (1978,1979) and Hsu 
(1982). The increased interest in the perpendicular case is due to the fact that in many 
cases of interest the plasma waves propagate at angles close to 7r/2. Therefore it is 
important to determine the range of propagation angles about ~ / 2  that are reasonably 
well approximated by the exact perpendicular case as far as stochasticity effects are 
concerned. This point has been discussed by Lichtenberg (1979) and Abe et a1 (1980) 
and recently by Singh et a1 (1983) and is the main topic of this paper. 

One remarkable property of the perpendicular case is that the ‘stochasticity 
threshold’ athr (the value of the wave amplitude above which chaotic trajectories 
dominate a region of phase space) does not depend sensitively on the number (one 
or two) of primary resonances of the corresponding dynamical system. We use this 
fact in the present work to propose a ‘stochasticity criterion’ that depends on the 
amplitude, frequency and propagation angle of the wave. We calculate initially the 
stochasticity criterion for a system with two primary resonances, using the well known 
method of overlapping resonances (Chirikov 1979) for which calculations are straight- 
forward (e.g. Ford 1978, Greene 1980). Then we make the assumption (ansatz) that 
this result is valid for a system with one primary resonance as well, and we use it to 
find the range of angles cp # 7r/2 for which the properties of the wave-particle system 
(irrespectively of the number of primary resonances) are similar to the properties of 
the exact perpendicular (cp = ~ / 2 )  propagation case. Note that in the special cases 
cp = 1r/2 and cp = 7 ~ / 4  the above criterion reduces to the results of Fukuyama et a1 
(1977) and Smith and Kaufman (1978) respectively. 

The paper is organised as follows. In § 2 we formulate the problem and write a 
dimensionless Hamiltonian function of the form H = H(,( r) + H I (  1 6). In § 3 we derive 
a criterion for the onset of chaos and show that for a range of angles around rr/2 the 
resulting quasi-perpendicular dynamical system has the same properties as the perpen- 
dicular one. For propagation angles outside this range (we identify this regime as the 
oblique case) a different criterion for the onset of chaos is effective, which generally 
is satisfied for lower wave amplitude values. Finally in 9 4 we summarise our results 
and make some concluding remarks. 

2. Formulation of the problem 

Consider a single particle of mass m and charge q moving in a static homogeneous 
magnetic field Bo= B,,2 and in a longitudinal electrostatic wave @ =  
-@(, cos (k,x + ktlz - w t )  propagating at an angle cp to the magnetic field. The motion 
of the particle is given by Hamilton’s equations 

and the Hamiltonian function 

H = (2m)-’[ pf  + ( py - qxB,)’+p;]- qQo sin ( k , x  + k,,z - ut) (1b) 

where x B o = A y  is the solution of Maxwell’s equation B = V X A .  The dynamical 
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system (1) has an obvious integral of motion, p y  = py0 (since y is an ignorable coordinate 
of ( l b ) ) .  By a shift in the origin of phase space this integral can always be written as 
pyo=O,  so without loss of generality we may take p y  to be zero. Changing the time 
variable according to ut’ = - kllz + t (wave frame of reference) and normalising length 
to k;’ and time to (@,/ m)-’, the Hamiltonian function (1 b )  can be written in action 
( I , ,  I*) and angle (e,, 6,) variables as 

X 

H=Z,+vZ,+~t21:  - c y  J,(r)sin(l6,--O2) 
I=-= 

where r = (211)1’2 and 6 =cot cp = kll/ k ,  = IL. & l / l L X  &I.  Notice that the Hamiltonian 
(2) is isoenergetically non-degenerate and therefore satisfies the conditions of the KAM 

theorem. As 6 -f 0 it reduces to 

X 

H = I ,  + v12 - cy J I (  r )  sin( I O ,  - 6,) (3) 
I=-X 

that gives the test particle’s motion in an exactly perpendicularly ( kIi = 0) propagating 
wave (8). A system with ( # O  but with behaviour similar to the t = O  case will be 
referred to in this paper as ‘quasi-perpendicular‘ for obvious reasons. The behaviour 
of dynamical systems of the type of (2) and (3) for increasing values of cy and the 
study of the transition to chaos by means of surface of section plots and theoretical 
calculations is beyond the scope of this work and can be found in the references already 
cited. 

Let H = H,+ E H , ,  E << 1, be a non-integrable Hamiltonian function, where Ho is 
an integrable Hamiltonian (Arnold 1978). Then it is known that the method for 
calculating the stochasticity threshold of the ‘perturbation’ F depends on whether H,, 
is degenerate or not and whether it possesses one or two lower-order resonances 
(Codaccioni et a1 1982). For a non-degenerate 

(Arnold 1978)) one-resonance system the stochasticity threshold can be estimated 
from the steep growth of the stochastic layer (Codaccioni et a1 1982) while for a 
degenerate one-resonance system it can be estimated from the overlapping of the 
closest higher-order resonances (Fukuyama et a1 1977). For a non-degenerate two- 
resonance system the appropriate method is the criterion of primary resonance overlap- 
ping (e.g. Ford 1978), while in this paper we propose a method for calculating a 
criterion in the case of a degenerate two-resonance system. 

The dynamical system of (3) has two lower-order resonances for v = n ++, where 
n is a natural number, and one lower-order resonance for all other values of v ;  when 
v = n this resonance is in addition a primary one (following the terminology of 
Codaccioni et a l ) .  In the case of (2) the situation is not so simple, because one more 
parameter has to be considered, the energy of the system; however, quite generally 
one can say that for 5 --* 0 the situation is similar to (3), while for large ( values the 
two-resonance case begins to dominate. A remarkable property of (3) is that if v >> 1 
the large scale stochasticity threshold a t h r  of the wave amplitude does not depend 
sensitively on the mechanism through which stochasticity sets in; actually to lowest 
order the stochasticity criterion turns out to be the same for either a one- or a 
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two-resonance system. This was first observed by Karney (1978) and discussed exten- 
sively by Lichtenberg (1979), who attributed this behaviour to the fact that although 
in a one-resonance system the stochasticity is due to the interaction of secondary 
islands, this happens when the primary islands have grown considerably, and therefore 
the onset of stochasticity is essentially controlled by the primary island size, exactly 
as in the two-resonance case. These ideas have been recently discussed again by 
Codaccioni er al (1982). 

In this work we initially calculate the stochasticity criterion for a non-degenerate 
two-resonance dynamical system ( v* = v + .$’I2 = n* +$in (2)) using Chirikov’s method 
of overlapping resonances. This criterion can then be used: 

(a) To calculate the stochasticity criterion of a degenerate two-resonance dynamical 
system ( v =  n+$ in (3) ) .  As we know that the mechanism of stochasticity onset is the 
overlapping of two lower-order resonances, we can do this by simply taking the limit 
of the already calculated criterion for 6 + 0. 

(b) To find a ‘universal’ stochasticity criterion, valid for all values of 6 and v*. To 
do this we invoke the fact that for degenerate systems (3) the stochasticity criterion 
turns out to be the same-to lowest order-for all v, and we assume that, in the same 
way, our criterion is actually valid for all v* and 5. This ‘ansatz’ is then tested by 
comparing results derived from this ‘universal’ criterion with computer experiments. 

3. The stochasticity criterion 

To find a criterion for the onset of chaotic behaviour in the trajectories of the 
Hamiltonian (2) in the case of two lower resonances the following information is 
needed: the two island families whose interaction we assume that causes the chaos, 
the coordinates of the centres of these islands and their widths, all as functions of the 
perturbation strength. The island families in the case of two lower-order resonances 
in (2) can be found by means of a canonical transformation. In appendix 1 we explicitly 
construct this transformation in a series form that gives the new Hamiltonian 

where v* = v+.$’I,, and v*- n*+$. The new canonical variables IT,  87, IT,  6; are 
related to the old ones through a near-identity transformation and in appendix 1 it is 
shown that 

(If - 1 1 ) / 1 1  =s ffv*-4’3 

so that for v* >> 1 we may take IT = I ,  in (4). For all values of I ,  then that satisfy the 
relation v* = n*+$ equation (4) can be approximated by the resonance Hamiltonian 

H ,  = I l  + v12 +;[’I; - a[J,,* ( r )  sin( n*O, - e,) + Jn*+] ( r )  sin(( n* + l ) e l  - e2)]. ( 5 )  

Following standard procedures (Ford 1978, Greene 1980) for the application of the 
resonance overlap criterion, we estimate in appendix 2 that chaotic motion sets in 
whenever 

{aIJn* (ro)([t2/n*2 + ( a / r $ ) \ J E *  (ro)1]}”** u * / 4 n * ( n *  + 1) = 1/4n* (6) 
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where ro is a local maximum of the LHS of (6) and is approximately given by Jh  ( r o )  = 0. 
Equation ( 6 )  is derived under the condition ( 2 / n * 2  > a / r g  (non-degeneracy condition) 
and its validity for 6 = 0 is not obvious. Since, however, it has been proved (Hsu 1982) 
that in the case 6 = 0 and v = n ++ stochasticity sets in through the interaction of the 
l / n  and l / ( n +  1 )  resonances and n*+ n as 6-0, equation (6) can as well be used in 
the 6 = 0, v = n ++ case taking its limit for 6 --* 0. Let us now for the moment assume 
that ( 6 )  is valid for all values of 6 and v*. Then we can distinguish five different cases: 
the perpendicular (6  = 0), the quasi-perpendicular (t’/n*’ < (a/r:)l.% ( r o l l ) ,  the 
oblique ( 6 2 / n * 2 =  ( a / r i ) l J $  ( r o ) l ) ,  the quasiparallel ( ( ’ / t ~ * ~ >  ( a / r i ) l J : s  ( r o ) l )  and the 
parallel ( 1 / 6  = 0). In the remaining part of this section we examine the form of the 
criterion (6) in each of these cases and compare it with numerical results. 

Taking the limit 6 + 0 of ( 6 )  we find 
( a )  Perpendicular case 

f(ro) = (IJ,(rdJ; ( r o ) l ) l ” / ~ o ~  1/4na.  

f(ro) = \ J , ( r d / r o ~  1 /4na  (8) 

( 7 )  

Since for r >> n we have J , ( r )  = - J ;  ( r ) ,  equation ( 7 )  can be simplified to read 

which is the criterion given by Fukuyama et al (1977)  and Hsu (1982) .  The perpen- 
dicular case has been extensively discussed so that here we limit ourselves to a few 
points. First, by using the asymptotic formula J , , ( r )  = (2/7rr)1/2cos(r-  7rn/2- ~ / 4 )  
in (8), we find 

Aa - i ( $ 7 r r 0 / n ) 1 / 2  A r =  3 7 r 3 / 2 r h / 2 / 8 J 2 n  

(because in the region r >> v consecutive extrema of In( r )  are spaced at T apart) from 
which we see that as a is increased by A a  a new ring of chaotic trajectories is added 
in the xp, surface of section, identical-up to a scaling factor-to the previously 
outermost ring and at a distance Ar = 7r from it. Second, we see that the unusual 
properties of the perpendicular case, that attracted so much attention in this dynamical 
system, are due to the degeneracy of ( 3 )  and the non-monotonic form of the rotation 
number R (Karney 1978). Finally we note that asymptotic expansions of ( 7 )  and (8) 
around r -  v do not give the same estimate for the ‘stochasticity’ threshold of the 
wave. From ( 7 )  we find 

(Ythr-  (n”3/0.6754)[(n’+ 1.6n4’3)/(1,6)n4/3]’/2=0.29n2/3 ( 9 a )  

a t h r =  ( n  +0.8n1/3)n1/3 /2 .7n  = 0.37n’/3.  ( 9 b )  

while from (8) we find 

This clears the contradiction between the result athr - v1l3 (Fukuyama et al 1977) and 
( Y t h r - -  v2I3 (Karney 1978) that was pointed out by Hsu (1982) .  Of course neither of 
the two estimates fits accurately to the numerical results; ( 9 a )  overestimates athr-as 
is usually the case with the resonance overlap criterion-while ( 9  b )  undercstimates 
a t h r  due to the considerable difference in the values of the functions f and f at r =  U. 

We use the term quasi-perpendicular for the case ( 2 / n * 2  < ( a / r ~ ) l J ~ *  (ro)l  not only 
because cp i 7r/2 in this case but mainly because the properties of such a system are 
found numerically to be very similar to a 6=0  system. This becomes obvious if we 
neglect in (6) the term t 2 / n * *  compared with ( a / r i ) J $  ( r o ) ,  in which case (6) becomes 
identical to (8) except for the dependence on Y* and n* instead of v and n. One of 

( b )  Quasi-perpendicular case 
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the  targets of this work is to define the  range of p for which the  above inequality is 
satisfied, and we d o  it by looking at  two extreme regimes, namely r = n* and r >> n*, 
where simplifications by asymptotic formulae can yield straightforward answers. For  
r = n* the  condition 5/n*2 < ( a / r i ) / J $  ( r d l  gives 

t2 < 0.67an*-1’3, 2 ( Y t h r .  (10) 

t2 < 0.25 

Taking a = ( ~ ~ ~ ~ = 0 . 3 7 n * l ’ ~  in (10) we find an upper bound for 5 

that gives cp > 63.5”, in complete agreement with the result of Lichtenberg (1979). 
For r >> n* one  could expect that the r-2 factor in the ( a / r 2 ) J $  ( r )  term may impose 
a more severe restriction in 5 (and (p), but this is not the case. Using the asymptotic 
form for J:*  ( r )  we find 

t2 < 0.115( n*/ a’) (1 1) 

For a = Q t h r  equation (1  1) becomes insensitive to variations in n* and gives approxi- 
mately cp > 60”. 

From the above short discussion it is evident that the functional form of the criterion 
(9) and the general results of the cited references for  perpendicular systems are  still 
qualitatively valid for a range of propagation angles around rr/2 as large as x / 2 *  7 ~ 1 6 .  
In other words the characteristic zone-like picture of the surface of section of the 
perpendicular case (e.g. Karney 1978) persists in the quasi-perpendicular one. It 
should be emphasised though that the value of v* (and thus the location and the order 
of the island families) is not constant, but really depends on the evolution of the system 
through the relation 

(12) 

An approximate relation between z ’ *  and r, useful in many applications, can be found 
in the following way. From the already known properties of a perpendicular system 
it is obvious that a ,  v and r scale as cy s v and r > v. Consequently we may neglect 
the wave term from the Hamiltonian ( 2 ) ,  in which case (2) solved for 1, gives 

(13) 
where h is the (constant) value of the function H. Substituting Z2 from (13) into (12) 
we find 

v* = v + t 2 I 2 .  

1 2  = [ - v i i v 2  - 252( I ,  - h ) ) 1’2]/ (2  

v*’= vz- t 2 ( r ’ - 2 h ) .  (14a)  
Equation ( 1 4 4  can be further simplified if, assuming 1 pz( << 2u* /  5 (which is a reasonable 
condition in view of the fact that 5 < 0.51, we neglect from it the term 2h.  In this case 
U* is given by the simple relation 

(146) 
By replacing v with Y* from (14b) we can directly apply to quasi-perpendicular systems 
formulae already derived for perpendicular ones. For example equation (5) of Karney 
(1978), that gives the outer radius of the chaotic annulus, becomes 

(15) 
Because in the cy >> a t h r  regime only the value of rmax is expected to  be sensitive to  
changes of 5, in table 1 we compare the values of rmax found numerically by Singh et 

y * 2  = y 2  - t2r2.  

rmax = [( 32/ x ) (  v’ - t 2 r i , a x ) a 2 ] 1 ’ 3 ,  a > athr. 
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Table 1. Comparison between the numerical results of Singh et a[ (1981) and analytical 
estimates. 

System I System I1 
Method of computation U = 19.2, a = 18.5 u=4.8, a =4.6 

Numerically (from Singh er a/)  88.5 

6 = O  approximation (equation (7) 110.0 
graphically or (40) of Karney (1978) 
analytically) 

graphically or (15) analytically) 
[=0.167 ( ~ ~ = 8 0 . 5 ' )  (equation (6) 84.5 

22.8 

22.0 

22.5 

a1 (1981) with corresponding analytic estimates from equation (15) of this paper and 
(40) of Karney (1978). As we see the analytic estimates are in agreement with the 
computer experiment. 

An oblique dynamical system is defined here as a system of the form of ( 2 )  with 
5 = cot-lcp satisfying the relation 

( c )  The oblique, quasi-parallel, and parallel cases 

5/ n*' = ( a/ r i  ) I J ; *  ( T o ) [ .  

From the preceding discussion it is apparent that this implies almost always Q < 60". 
In this case the derivative of the Bessel function in (7) can be neglected compared 
with the term t2/n** and (6) becomes 

I J n * ( r o ) l a  1/16a52, 5 > 0.5. (16) 
This result (without the restriction in the angle) has been obtained by Smith and 
Kaufman (1978) (although in a slightly different form) by direct use of the two primary 
resonance overlap criterion. 

An immediate result of (16) is the 'stochasticity' threshold of the wave amplitude 

a t h r =  0.093n*'i3/52, 5> 0.5, (17) 
which is always lower than the corresponding value given by ( 9 b ) .  Notice that (17) 
and (9) give the same (Ythr for 5=0.5,  which is consistent with the fact that arhr, as 
defined in ( 9 b )  and (17), should depend continuously on 5 (andcp). However, the 
general properties of an oblique system are more involved than the corresponding 
properties of a quasi-perpendicular, since the former not only is genuinely two- 
dimensional, but has drifting rather than fixed resonances as well (n*  = n*(12)). For 
instance, a direct estimate of the chaotic region from (16) is not possible since the 
rotation number R is in this case a monotonic function of r. Therefore (16) has 
meaning only around the first few (if not the first) maxima of IJ,,. ( r ) ( .  Consequently 
the main mechanism of chaotic trajectory 'diffusion' in this case is not the motion of 
the particle across the fixed l / n  (and possibly the l / ( n  + 1 )  for v = n + 0.5) resonances 
(as it is in the perpendicular case), but rather the motion due to the drifting of v*, 
that in turn moves the first maximum of J,,* ( r )  (JL*, ,  = n* +0.8n*''3). An appropriate 
theory for oblique systems therefore should include the evolution of both harmonic 
oscillators I ,  8, and I,@, in time, using both surfaces of section. Moreover, this theory 
should in the limit 5-'+ 0 give the exactly parallel ( l - '=  0) case. The latter can be 
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described by the separable Hamiltonian 

H = H , + H , ,  

H I - -I Z P X  2 + t (  Pr - x?, 

which is integrable, and has therefore no chaotic trajectories. We  are presently looking 
in this direction, in order to treat the study of the oblique and quasi-parallel cases as 
a continuation of the perpendicular and quasi-perpendicular ones along the lines 
already discussed, in order to give a unified description of the chaotic regions on the 
xp, and z p ,  surfaces of sect'ion for all values of 6 from 0 to  x. The results will be 
reported in a future publication. 

H 2 - - ZP 1 I - CY sin( z - vt) = $1; - VI? - cy sin e?, 

4. Summary and discussion 

In this work we discussed the large scale chaotic motion of a charged test particle in 
a static homogeneous magnetic field and a longitudinal electrostatic wave propagating 
at an angle cp with respect to the field. The motion df the particle is given by the 
Hamiltonian function (2)  which describes two oscillators coupled through the wave 
term. In equation (2)  U is the ratio of the wave to the particle gyrofrequency, CY is 
the dimensionless wave amplitude, and 5 =cot - '  cp. We proposed a criterion for the 
onset of chaotic motion in this wave-particle system, and according to this criterion 
we divided the dynamical systems of the type of (2)  into the following five classes. 

(a) Perpendicular (cp = 90"). This is the case with the most clear-cut and unique 
characteristics, due to the degeneracy of its Hamiltonian, the most studied and the 
best understood. With CY increasing from zero, trajectories are initially destabilised at  
a distance r =  u + O . ~ U " ~  from the origin of the surface of section, creating a toroidal 
shell of chaos in the (extended) phase space; on the surface of section .KP, this shell 
is represented by an annulus. As (Y further increases this chaotic annulus begins to 
spread, mainly outwards, in a characteristic two-step process. In step one a l / n  island 
family is successively created at  a radial distance Ar 2 i~ from the last outermost 1,'n 
family and rotated by an angle AO, = i ~ / n  to it. In step two this family is destabilised, 
either by the l / ( n  + 1) resonance (for U = n + 0 .5 )  or  by a higher-order resonance (for 
all other values of v), creating a new chaotic annulus. This process is described by 
(7) and its simplified version (8). In passing we note that the chaotic wandering of 
the particle in phase and velocity space can be described by a simple diffusion equation 
(e.g. Karney 1979, Antonsen and Ot t  1981). 

(b) Quasi-perpendicular (90°> cp 3 65").  As implied by its name this class has the 
general features of the perpendicular class but somehow 'smeared out' .  The formulae 
of the perpendicular case can be corrected to take into account the finite 5 by using 
the Doppler shifted frequency v* from (12); this results in a shrinkage of the chaotic 
annulus of the corresponding perpendicular case. 

( c )  Oblique, quasi-parallel, parallel (6.5'3 cp 3 0"). In the oblique case the rotation 
number becomes a monotonic function of r, which leads to a 'stochasticity' criterion 
with a stochasticity threshold lower than that of the corresponding perpendicular and 
quasi-perpendicular systems. Annuli with chaotic trajectories on the xp, surface of 
section a re  created in this case as well, which a re  even narrower than in the correspond- 
ing quasi-perpendicular case, due to the strong dependence of v* on 12. This was 
numerically observed by Singh er a1 (1983). 
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As cp + 0" the dynamical system begins to behave in a more orderly way, because 
the parallel (cp = O " )  case is integrable, thus possessing no  chaotic trajectories at all. 
As a result the quasi-parallel case can be treated as a perturbation of the parallel, 
using the angle cp as the small parameter. 
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Appendix 1 

The Hamiltonian (2) can be transformed to a simpler form, in which resonances become 
explicit, by using a standard Lie transform algorithm to kill all resonances but two 
(Deprit 1969). In this algorithm the generating function W is calculated after a certain 
selection for the new Hamiltonian is made. In the present case we keep in the new 
Hamiltonian H* all the angle independent and all the resonant terms. Taking U* = 
Y + 
H * = H g  + ( Y H T + $ C Y ' H ~ + . . .  

and v* = n* +0.5 the new Hamiltonian is 

fl'+l 

/=n '  
= I T  +VI: + t t 2 ~ : 2 - a  J / ( r * ) s i n ( l e T - e ~ ) +  . . .  ( A l . l )  

and the generating functions are 

CY2 cos(ie: - e : )  
2 /ff l+.fl*+l I - U *  

+- w2+. . . 
2 

W = a W , + -  W,+ . . . =  a J l ( r * )  

of the transformation (e , ,  e,, 11, I,) + (e? ,  e,*, IT, IT ) and 

COS( le, - e,) 
V = (Y VI + . . . = -a W, + . . . = -a J /  ( r )  

I # f l * , f l ' + l  I -  U* 
+. . . 

of the inverse. The new action IT is expressed as a function of the old variables as 

.TI( r )  sin( lo1 - e,) + . . . . a v, 1 IT =I,+-+. . . = I , + f f  - 
dB1 / # f l ' , f l ' + l  I -  U* 

(A1.2) 

In the rest of this appendix we drop the stars from U* and n* for notational convenience. 
For the Hamiltonian ( A l . l )  to be used in place of (2),  equation (A1.2) has to be 

a near identity transformation (that is, IT -II has to be of higher order than 11) in 
order to use I ,  instead of IT in H*. To estimate the difference IT -II we first observe 
that 

1 
/ # f l . f l + l  I -  

J l ( r )  sin( /e, - e,) 4 - J l ( r )  = S.  (A1.3) 
1 e -  

/#f l , f l+ l  1 - y 

Noting that the main contribution to S comes from the terms with 1 = n, we replace I 
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by n in the numerator of (A1.3) and we find 

where 6 = v - n - 0.5. The last sum can be approximately evaluated by using the 
asymptotic expansion of the Bessel functions, and by transforming the trigonometric 
sums to products. This gives 

= - d n - l ( r ) + 2 d L  (r)( .n/4- 1) 

and because lJ , ( r ) ls  0.81-1’3 and I I  b v 2  we conclude that S S  O(n2’3) and (Il - I T ) /  
I , G O ( C Y V - ~ / ~ ) .  The last result proves that (A1.2) is indeed a near identity trans- 
formation. Note that if we had kept only one resonant term in the new Hamiltonian 
(Al . l ) ,  I l - I T  would be of lower order, and the restrictions for (A1.2) to be a near 
identity transformation would be severe (Karney 1978). Before closing we want to 
comment briefly on the form of HT in ( A l . l )  and the second-order resonances of 
(2). Carrying on the algorithm to the next order we find that H:  can be split into 
two groups of terms, HT = H &  + Hz2.  The first group is 

1 aJ2( r*) 
HT,= -- 

/ # n * , n * + l  I -  v aIT 
(A1.4) 

and does not contribute to island formation. Note also that using equation (9.1.75) 
of Abramowitz and Stegun (1972) we can show that the sum in (A1.4) converges and 
that it is of second order with respect to H f .  The second group is angle dependent 
and more complicated, since it contains double sums. An estimate of its dominant 
behaviour (using the same equation above) gives 

2 n * + 2  

m = 2 n *  
H;* - Jm(2r*)cos(meT -20;) 

where the approximation is in the coefficients of the cosine terms. Obviously then the 
second-order resonances of (2) are the 2/2n*, 2/(2n*+1),  and 2/(2n*+2).  

Appendix 2 

A Taylor expansion of (5) in the variable Il gives the approximate Hamiltonian 

H R  - H  I i l l ,  + ~ a 2 H l a l : l , , , , ( A l , ) 2 .  (A2.1) 

The width of an island of (A2.1) is given by (Ford 1978, Greene 1980) 

(A2.2) 
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On the other hand ( 5 )  implies that the onset of chaos is due to the interaction of the 
R = l / n *  and R = (n*+ l)-’ resonances, where R (the rotation number of (5) along 
the radius passing from the centre of an n*-island) is given by (Karney 1978) 

R =( l /v* ) [ l+ (a / r ) J ;* ( r ) ] .  (A2.3) 

From (A2.3) the distance AIl between the centre of an n*- and an (n*+l)-island is 
estimated as 

(A2.4) 

From (A2.2) and (A2.4) finally we find that the chaotic motion sets in when SI1 3 AI1 ,  
that is when 

{alJ,. ( r ) 1 [ [ 2 / n * 2 + ( a / r 2 ) I J ~ * ( r ) 1 ] } ” 2 ~  v*/4n*(n*+l ) -  1/4n*. (A2.5) 

Note that the LHS of (A2.5) is evaluated at a local maximum (given approximately by 
.I;* ( ro) = 0) since the inequality is more easily satisfied at this point. 
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