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ELF Generation in the Lower Ionosphere 
via Collisional Parametric Decay 

K. Ko, 1 C. R. MENYUK, 1 A. REIMAN, 2 V. TRIPATHI, 3 
P. PALMADESSO, 4 AND K. PAPADOPOULOS 5 

Generation of ELF waves by stimulated parametric coupling of two HF waves in the lower ionosphere 
is considered. In this region the nonlinear force is dominated by the thermal rather than the ponder- 
omotive nonlinearity. It is shown that this results in lowering the pump threshold for complete decay by 
more than an order of magnitude while achieving efficiencies in excess of those expected on the basis of 
the Manley-Rowe relations. The lower-frequency mode excited for E region altitudes is the helicon mode, 
which continues to frequencies below the ion cyclotron frequency because ion-neutral collisions freeze 
the ion motion. The application of these results to ELF generation in the lower ionosphere, including 
power estimates for a proof of principle experiment, is discussed. 

!. INTRODUCTION 

The interaction of high-power radio waves with the iono- 
spheric plasma is strongly nonlinear. The main nonlinearities 
arise through the ponderomotive and thermal forces. As a 
result of the nonlinear interactions, electrostatic (es) and elec- 
tromagnetic (em) waves with frequencies different from the 
pump frequency can be generated. A comprehensive review of 
the subject can be found in a recent monograph [Gurevich, 
1978]. The present paper examines the feasibility and the ef- 
ficiency of utilizing the nonlinearities of the ionospheric 
plasma to downconvert HF signals to ELF in a controlled 
fashion. The subject matter, besides its intrinsic scientific 
merit, has a broad spectrum of applications, ranging from 
ionospheric and magnetospheric probing to low-frequency 
submarine communications. The emphasis in this work will be 
on the nonlinear physics aspects of the interaction, the pro- 
jected scalings, and the heater requirements for a proof of 
principle experiment. 

Ionospheric heaters have been used•successfully for the gen- 
eration of VLF and ULF signals [Stubbe and Kopka, 1977; 
Stubbe et al., 1981; Ferraro et al., 1982]. These experiments 
induced local modulation of existing ionospheric currents, 
such as the auroral and equatorial electrojets, by illuminating 
the current-carrying region with strong HF waves amplitude- 
modulated at the desired low frequency. The basic physics of 
the technique, known as nonlinear demodulation or, for his- 
torical reasons, ionospheric detection, lies in the fact that the 
HF wave produces modulated electron heating, which results 
in modulation of the local conductivity. Natural ionospheric 
currents which pass through the illuminated region are modu- 
lated by the conductivity changes, producing a radiating 
dipole current pattern [Chang et al., 1981]. The radiated low- 
frequency wave couples to the earth-ionosphere waveguide 
and propagates to long distances with small attenuation 
[Chang et al., 1981]. The earliest experimental results on non- 
linear demodulation were observed during the Soviet heating 
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experiments at Gorki [GermantseV et al., 1974; Kapustin et al., 
1977]. The polar electrojet was modulated in the VLF range 
(1-7 kHz) with a 5.75-MHz carrier and 15-MW effective radi- 
ative power (ERP). Signals were observed only between 2.5 
and 4 kHz with strength in the range 2-25 x 10 -2 #V/m. 
More reliable results for polar electrojet modulation Were re- 
ported by the Max Planck group [Stubbe et al., 1982a, b] 
using the Tromso Norway ionospheric heater. The ERP in 
this case varied.between 75 and 125 MW, and the HF fre- 
quency utilized was 2.5-8 MHz. VLF signals with amplitude 
10-3 •, were observed with maxima for 2 kHz. Finally, Ferraro 
et al. [1982] reported VLF signals in the 500-Hz to 5-kHz 
range using the Arecibo HF heater at 3.17 MHZ to modulate 
the equatorial electrojet. Again maximum strength appeared 
for 2-kHz VLF signals. 

Because of technical problems with the Tromso heating fa- 
cility it has not been possible to generate signals in the 10-Hz 
to 200-Hz regime. However, signals up to 10 •, have been 
generated for Pc 5 pulsations up to 10 Hz. These signals are 
much larger than expected from current modulation, and their 
physical origin has been a mystery. In a recent paper, Papado- 
poulos and Chang [1985] noted that spontaneously generated 
magnetic fields with time variation similar to the HF modula- 
tion can be generated during ionospheric heating experiments 
when Vn x V T e • 0, where Vn is the ambient ionospheric den- 
sity gradient and V T e the electron temperature gradient in the 
heated region. The generation of these fields is independent of 
the ambient current, and its physical origin has been demon- 
strated in laser-produced plasmas [Starnper et al., 1971]. Papa- 
dopoulos and Chang [1985] indicate that for frequencies below 
40 Hz the spontaneous field generation dominates over the 
current modulation, thereby explaining the large observed sig- 
nals. 

While the above mechanisms appear to be rather well un- 
derstood, they are relatively inefficient in downconverting HF 
power to ELF. In addition the nonlinear demodulation can be 
applied only in regions of preexisting currents, and the maxi- 
mum generated signal amplitude is strictly constrained by the 
local current values. These limitations provoked the search for 
other more efficient nonlinear mechanisms for ELF generation 
which are independent of the ambient current. Papadopoulos 
et al. [1982] considered the possibility of parametric exci- 
tation of an Alfv6n or magnetosonic wave in the ionosphere 
by beating two high-frequency waves (a•x, a•2) with a•x - a•. 
equal to the frequency of the low-frequency mode (a•3). The 
process envisioned was essentially a modified stimulated for- 
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ward Brillouin scattering [Liu, 1976] with the Alfv6n wave, 
instead of an ion acoustic wave, acting as the low-frequency 
signal. In the language of parametric instabilities the pump 
(09a) and the idler (092) are HF waves, while the signal (093) was 
an Alfv6n or magnetosonic mode. In the work by Papado- 
poulos et al. [1982] the process was considered as collisionless 
so that the ponderomotive force was the dominant nonlinear 
force. The power threshold necessary for complete decay can 
be found by the inverse scattering transform (IST) method 
[Zakharov and Manakov, 1975; Reiman, 1977; Kaup et al., 
1979]. The analysis revealed that for upper F region iono- 
spheric parameters the power threshold necessary to excite 
Alfvbn waves was very large. In addition the maximum down- 
conversion efficiency was limited by the Manley-Rowe rela- 
tions [Sagdeev and Galeev, 1969] to 093/09•, i.e., less than 10-'* 
for downconverting 5 MHz to 100 Hz. It was subsequently 
noted [Papadopoulos et al., 1983] that if the thermal nonlin- 
earity caused by collisional electron heating [Berger et al., 
1975; Gurevich, 1978] dominates over the ponderomotive 
force, the downconversion efficiency is increased by a factor 
v/093 where v is the electron collision frequency. Furthermore, 
the power threshold required for complete decay is reduced by 
a comparable v/093 factor. Since the values of v are larger for 
the lower ionosphere (i.e., E region), it is advantageous to 
consider the interaction in this region. 

In this paper we examine the ELF generation in the iono- 
spheric E region by the beating of two HF heaters. In the next 
section we discuss the ELF plasma eigenmodes in the E region 
where the two HF pumps will couple and derive the equations 
describing the nonlinear interaction of the three wave packets. 
It is noted that for altitudes below 150 km the ion-neutral 

collision frequency (v3) is larger than the ion cyclotron fre- 
quency (%0, thereby not allowing the existence of proper 
Alfvbn or magnetosonic eigenmodes. It is then found that the 
viscous ion damping (v 3 • 09•) freezes the ion motion and 
allows the whistler mode to continue as a helicon [Aigrain, 
1961-1, a right-hand polarized mode, to frequencies 093 ( %-In 
section 3 we extend the work performed on threshold con- 
ditions and power transfer efficiency in collisionless three- 
wave packet interactions to the collisional regime. This section 
includes many novel and rather profound physical issues. Sec- 
tion 4 uses the mathematical and numerical conclusions of 

section 3 to compute the power and electric field threshold 
conditions for ELF generation in the lower ionosphere by two 
HF pumps under steady state conditions and to discuss the 
antenna requirements for a proof of principle experiment. The 
final section summarizes our results, stresses their limitations, 
and outlines potential improvements and extensions. 

2. NONLINEAR INTERACTION OF Two HF 

WaVE P^CI•TS WITH ^N ELF WaVE 

IN THE LOWER IONOSPHERE 

We assume first that the two interacting high-frequency 
waves have 09•, 092 >> 09ce, where %e is the electron cyclotron 
frequency. In this case the plasma behaves isotropically, so 
that the dielectric tensors e•,2 of the two waves are diagonal, 
i.e., e•,2I. In the fluid approximation the dispersion relation is 
then 

2 

09-O1'2 -- k• 2 = 0 (la) D•,2- c 2 •,2 ,2 

•,2 1-- 09t'e2 [ iv ] = 2 1 (lb) 
LO1,2 LO1,2 

where (Dpe is the plasma frequency and v the electron-neutral 
collision frequency. For the low-frequency wave we consider, 
093 < 09,, where 09,i is the ion plasma frequency, so that we 
can neglect its electric field parallel to the ambient magnetic 
field, whose direction is taken along the z axis (i.e., E3z • 0). 
The dispersion relation for the low-frequency wave is then 
[Krall and Trivelpiece, 1973] 

(D3 2 83xx • k3z 2 (D32 '• C 2 •3 xy 
= o (2) 

093 2 093 2 
t;3 xx-- k 3 -- 7 83xy C 2 

where •3 xx and e3 xy are the diagonal and the off-diagonal 
elements of the cold plasma dielectric tensor. Assuming %e >> 
V >> 093, we find 

i09pe 2 093 i09pe 2 
83exx -- 2 •3 exy = (3a) 

(D c e V (D c e (D 3 

ixx 

•3 ixy = 

09pi2(09 3 -1 t- iv3) 
093109ci 2 -- (093 q- iV3) 2] 

i09 p i 2 OO ci 
093109ci 2-- (093 q- iV3) 2] 

For (Dpi > V, max ((Dci , V3, 093), equations (3) reduce to 

xx 1 q- 83exx q- 83ixx __ 

xy ixy •3 = E3 exy + E3 --- • • 

(3b) 

(-Opi 2 093 q- iv3 
[09ci 2 -- (093 q- iv3) 2] 093 

(4a) 

1 - (4b) 
(D ce fD 3 (D ci 

From (2) and (4• and neglecting the displacement current we 
find the following regimes of weakly attenuated proper eigen- 
modes: (1) For %i >> 093, v3, 

•3 xx= 1 + (5a) 
(D c i 2 (D 3 7 

•3 xy --- 0 (5b) 

which allows propagation of Alfv6n waves as long as V3/(D 3 
1. (2) For •3 

e3 xx = 0 (6a) 

• 3 xy i•ve 2 = (60) 
•ce•3 

which is the usual electron whistler. (3) For v3 >> 09c•, 093, 

•3"" = 0 (7a) 

• 3 xy i09p e 2 - (70) 
O.) c e (D 3 

regardless of the 093/%• ratio. This is similar to the whistler 
dispersion found above for 093 > %i; it is the helicon mode (C. 
R. Menyuk and K. Papadopoulos, private communication, 
1984). In this case, contrary to case 1 above, the current is 
carried by the electrons while the ions are viscously frozen. In 
this sense it is analogous to the well-known helicon wave in 
solid-state physics [Aigrain, 1961] in which the current is car- 
ried by the free electrons, while the ion motion is frozen by the 
lattice. Referring to the excitation of ELF waves below 100 Hz 
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in the lower ionosphere, it is obvious that the relevant mode is 
the helicon rather than the Alfv6n mode, to which we shall 
restrict our attention. 

Our starting point for the derivation of the nonlinear cur- 
rents that couple the three modes is the warm collisional elec- 
tron fluid equations I-Gurevich, 1978; Perkins and Goldman, 
1981] 

• =_ e E+ -vve (8) • + ¾e ' V ¾e me C men e 

•+%.V n•= -n•V.v• (9) 

• + %. V T• = -•(vme% - T•V). %- Av(T•- To) (10) 
which together with the equation of state for the pressure, 
Pe -- nere, form a closed system of equations for n•, %, and Te; 
A v is the mean fraction of energy lost per collision, and To the 
ambient temperature. In (10) we have neglected heat conduc- 
tion, an assumption valid for the E but not for the F region. 
Other terms neglected, such as friction and thermal force, do 
not change the final results. The nonlinear currents can be 
computed by considering small perturbations about a non- 
drifting equilibrium (no, To) so that Ve = V, n• = no + n, and 
T• = T O + T, assuming plane wave solutions of the form exp 
[-i(0). t - k ß r)] and using the resonance conditions 

(D1 -- 0)2 + 0)3 
(11) 

k• = k: + k• 

The computation is tedious but straightforward and is given 
in the appendix. The resulting high-frequency nonlinear cur- 
rents are 

NL e E2 tl___•21(k3.1•3e. E3) J• = 4•m• 0)2 
(12) 

e E• (1 _ •/•v•)(k3. g3e. E3) . j2NL -- 4•m• 0) 1 
Here and in the rest of the paper, v, n, T, J, and E are Fourier- 
transformed quantities. With the exception of the small iv/0)•, 2 
terms, (12) is the standard result FWeiland and Wilhelmsson, 
1977]. The low-frequency nonlinear current is given by 

-- I• 3 ß k3(E x ß E2* ) 1 + •--•3J (13) J3 4rOme 
For v--0 this is again nothing more than the standard low- 
frequency current caused by the collisionless ponderomotive 
force [Papadopoulos et al., 1982]. The coefficient 4v/30) 3 is due 
to the nonlinear perturbation caused by ohmic heating. For 
v/0)3 >> 1 it becomes the dominant term, introducing a v/o) 3 
enhancement factor in the current as well as a r•/2 phase shift. 
Several physical comments on the derivation of (12) and (13) 
can be found in the appendix. 

Using the currents jNL as a source in the wave equation for 
each of the three waves, we find 

i4rc0)j NL 
Dj' Ej = C2 Jj 

0)J 2 I Dj = • •j -- kj q- kik j 

(14) 

In the absence of nonlinear currents (jNL = 0) the vanishing of 
the determinants, [D[ = 0, represents the linear dispersion rela- 
tions of the individual waves, which were given by (1) and (2). 
Taking without loss of generality the polarizations of E•,2 as 

E•, 2 = E•,2y (15) 

and using the isotropic property of the tensors gl,2 for 0)•.2 >> 
0)c•, we find 

i4rc0)! NL 
D•E• = • J• 

i4•0) 2 
D2E 2 = •'• J2 NL 

(16) 

with D1. 2 given by (1) and J1,2 NL by (12). For the polarization 
given by (15) and using the fact that E3z • 0 for 0)3 << 0)vi, the 
equations for the low-frequency wave are given by 

0)32 F0)32 œ3xxm k3z 2 E3x + E 3 L C2 -• XyE3y = 
i4rc0) 3 
C2 J3x NL 

(17a) 

0)32 F 0)32 2] i4•0)3 -- C2 83XyE3x q- L c2 l•3xx- k3 E3y = c2 J3yNL 
(17b) 

where c3 xx and e3 xy are given by (4). Eliminating E3x from (17), 
we find 

D3E3y = i4:rc0)3 F0)32 xyF0)3 2 ]-1 • L-•-5-•3 • c 2 •3 xx-k3• 2 

ß J3x NL + J3y NL] 
where 

93 F0)32 ]2[0)32 ]-1 = L - L 

(18) 

+L c2 
(19) 

Depending on whether we are coupling to Alfv6n waves or 
whistler-helicon waves, the values of the dielectric tensor ele- 
ments will be given by (5) or (7). In this paper we are interest- 
ed in coupling to helicons, so that 

le3Xyl m i V 
- >> 1 

E3 xx me 0)ce 

Therefore D 3 becomes 

[k3k3z -- (0)32/c2)la3Xyl][k3k3z 4- (0)3:'/c•)le3"Yl] 
D 3 = _ 

k32 

(20) 

with e3 •'• given by (7b). The case of Alfvbn waves can be exam- 
ined in an analogous manner. Assuming without loss of gener- 
ality that k3• = 0, we find that 

k3'• 3 ß E 3 = k3xg3X•E3y 

so that J3 -- J3yY' From (12), (13), (16), (18), and (20) we find 
the coupled system of equations, 

D t 0)---• 0)20)3 
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where 

( D2 E2 [1 1 -- iv E•E3 (2lb) 
0)2 0)10)3 

D3 E3 =/• 1+ ----- 
0)3 30)3J 0)10)2 

(21c) 

e k3x0)pe 2 
(22) • - me c2 0)ce 

and we have set E3y-- E 3. In the collisionless case the high- 
frequency waves produce a low-frequency ponderomotive 
force acting on the electrons, which results in a nonlinear 
current jN,• that drives E 3. In the collisional case, JN'• is pre- 
dominantly due to a low-frequency temperature perturbation 
T •[ when the electrons are ohmically heated. In either case, 
the beating of the high-frequency velocities v x, v2 with the 
low-frequency density perturbation n 3 (see appendix) provides 
the primary coupling mechanism between E3 and the high- 
frequency fields E•, E2- It is worth noting that by choosing the 
HF electric field polarization in the y direction in the interac- 
tion with 0)3 << 0)1, 0)2' Ik•l << ]kal, Ik21, we end up with all of 
the nonlinear currents and the low-frequency electric field in 
the y direction. 

Equations (21) describe the interaction of infinite, homoge- 
neous, plane waves. In practice, however, we deal with two 
HF wave packets interacting with an ELF wave packet within 
a spatially localized region controlled by the antenna gain. In 
order to determine the efficiency of the interaction the local- 
ized and inhomogeneous nature of the wave packet should be 
included. For a weakly nonlinear interaction between local- 
ized wave packets, we follow the standard procedure and 
expand Dj in a Taylor series about the phase matching point 
where the resonance conditions (11) are met; that is, we let 

ic3Dj[c3 ]iODj + + v +... 
operate on 

Ej(r, t) = #jaj(r, t) exp [-i(%. t - kj. r)] (23a) 
where 

#j = 0)j/(63Dj/•0)j) 1/2 (23b) 

and aj is the slowly varying envelope of the jth wave packet. 
The linear damping rates Fj are given by the imaginary parts 
of Dj while the partial derivatives of Dj are evaluated for a 
particular mode (%, k j). For positive energy waves, as is the 
case here, c•Dj/c•0)j > 0. Using the fact that to lowest order, the 
waves obey the linear dispersion relations Dj = 0, we obtain 
the equations for the collisional three-wave coupling in stan- 
dard form: 

• + ul ß V + Fi a; = K 1 -• a2a 3 (24a) 

(• ) ( iv•a •+u2'V+F2 a2=-K* 1- •aa* (24b) 

+u3.v + r3.3: -g* 24c) 
where 

c3Dj ;r3Dj• - • 
uj = - cq0)"•.. k,'•// (25a) 

are the group velocities of the waves and 

_i]•(i•D11•D2•D3 • - 1/2 K = k•0)l •0)2•0)3J (25b) 
is the symmetric coupling coefficient for the collisionless inter- 
action. By setting c•/c•t = 0, one finds the steady state two- 
dimensional version, 

•zz + a, •xx + Px dx = g 1 - -- a2a 3 (26a) 

where the interaction is assumed to evolve in z (uj: > 0). The 
new variables are expressed as follows' 

aj = aj% '/2 aj = uj•/% Pj = Fj/uj• (27a) 
• = K/(u•:u2:u3:) x/2 (27b) 

Equations (26) with the definitions from (23) and (25), the 
value of • given by (22), and D•, D 2, D3 from (1) and (20) form 
the basic equations of our problem. In the next section we will 
use them to determine the transfer efficiency during the steady 
state interaction of the three wave packets. 

3. THRESHOLD CONDITIONS AND TRANSFER 

EFFICIENCY FOR THREE-WAVE PACKET 
INTERACTIONS IN DISSIPATIVE 

SYSTEMS 

Before attempting to solve (26) for the situation under 
study, it is worthwhile to review briefly the previous work on 
the subject, which, owing to its rather mathematical nature, 
might not have reached the ionospheric community. In the 
collisionless case (i.e., v = 0), the coupling coefficients are sym- 
metric, and the set of equations (24) has an infinite set of 
invariants. This allows for the use of inverse scattering trans- 
form (!ST) techniques [Ablowitz and Segur, 1981]. The one- 
dimensional version of (24) [Zakharov and Manakov, 1975; 
Reiman, 1977; Kaup et al., 1979] has been extensively studied 
in the literature using IST, and the results were confirmed by 
numerical solutions. As noted before, the two-dimensional 
steady state equations (26) are equivalent to the transformed 
one-dimensional space-time equations. Therefore the results of 
the one-dimensional space-time problem can be directly ap- 
plied to our practical problem. An important result of the 
one-dimensional space-time collisionless analysis is the fact 
that the threshold value required for pump depletion is equiv- 
alent to the pump amplitude required to achieve an absolute 
instability within its width L [Reiman, 1977]. 

For collisionless three-wave interactions, the eigenvalue 
problem which determines the conditions for absolute insta- 
bility in a rectangular pump is well known (i.e., the backward 
wave oscillator) [Bobroff and Haus, 1967]. Taking the pump 
inhomogeneity to be along x, the instability is absolute if 

u2•u3• < 0 (28a) 

L > • L c (28b) 
where Lc = [a2•az•l•/2/lTo[ is the critical width and ITol = 
[K*a•[ is the uniform medium growth rate. Equation (28a) 
requires the decay waves to be oppositely traveling, while 
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• 0.4- 

;/ 
,/ / 0.0• J , 

0.• 3.•6 7.071 10.607 14.142 

L/• (L/Lc) 

Fir. 1•. Real part of •/, (•,) •ersus •//, (•/•,) for the collisional 
(collisionless) i•teractiom The dotted li•es refer to the collisionless 
C•SC. 

equation (28b) defines the pump threshold for the absolute 
instability to occur within a width L. We demonstrate below 
that for the strongly collisional case (v/to 3 >> 1), similar con- 
siderations apply. Note that, however, since the coupling coef- 
ficients are by a factor v/to 3 larger, the required pump levels 
are smaller by the same factor. In addition the transfer ef- 
ficiency increases by the same factor. Notice that because of 
the dissipative nature of the system, IST techniques are not 
applicable, so that one has to resort to numerical techniques. 

The linear equations for the eigenvalue problem that deter- 
mine absolute instability when one considers the initial stage 
of the interaction during which the pump is large, a• >> a2, a 3, 
are given by the one-dimensional version of (24b) and (24c). 
Here only the evolution of the decay waves is important, so 
that we have 

• + u2,• • + F2 a2 = -Yo(X)a3* 1 - (29a) 

• + u3,• • + F3 a3 = -7o(X)a2*A (29b) 

Note that 7o(X)contains the pump inhomogeneity and A is 
defined by 

i4v 
A = 1 + • (30) 

3(.0 3 

For the threshold calculation here, we can ignore the small 
collisional correction on the right-hand side of (29a). The lin- 
early coupled system is solved by taking the conjugate of (29a) 
and Laplace transforming in time as e v'. We then make the 
substitution 

1 (p+F 2 (a2*, a3) = exp - • u2,• P •3•I'3)x](A2, A3) (31) 

(32a) 

to obtain 

where 

( • ) •' o * ( X.•_•) .'t3 •-•x+r/ A2= -- u2 x 

r3 ) --7ø(x-•) A2A (32b) •xx - r/ A3 = u3,, 

1( .p + ['2 P+-F3• (33) • = • U2x U3x / 

Equations (32), when subject to the appropriate boundary 
conditions, form the eigenvalue problem for the growth rate p 
which may in general be complex. 

In the case of a rectangular pump of width L, 

7o(x) = 7o -L/2 _< x _< L/2 

7o(X) = 0 otherwise 

one may combine (32) inside the pump region to find 

(3+ q)A3 = 0 (34) 
which describes a harmonic oscillator in the normalized coor- 

dinate • = x/l½ with a potential 

q = e io _ q21c2 

where 

The new critical width is given by 

I, = L,/IAI •/2 (35) 

Equation (34) readily admits solutions in terms of trigono- 
metric functions to which we apply the boundary conditions 
that A 3 be zero at -L/2 and A 3 be zero at L/2 for u2,• > 0, 
u3,• < 0. This leads to the dispersion relation 

qZ/2 cot (qZ/2Lc/l,) + ql, = 0 (36) 

for the normalized growth rate rile. We have evaluated (36) 
numerically in the limit vim 3 >> 1, which sets 0 = n/2 and 
Ial • v/o3. Complex eigenvalues are found, which indicates 
that absolute instability indeed occurs in the collisional 
regime. The real and imaginary parts of rile for the first four 
growing modes are shown in Figures la and lb as a function 
of the normalized width L/l c. For comparison, the results for 
the collisionless regime (v = 0; 0 = 0, A = 1, lc--} Lc) are also 
plotted; in this case, the growth rates are purely real. From 
Figure la, one finds the threshold condition in the collisional 
regime to be 

L > 1.8/, (37) 

For a given width L it is clear that the pump value a• required 
to achieve absolute instability for the collisional interaction is 
smaller by the factor l,/L, -IAI-•/2. Thus a reduction in the 

2.0 

1.2' 

0.4- 

-0.4- 

-1.:2 

-2.0 
0.000 a.•a6 7.(•71 10.•07 14.142 

L/• c (L/Lc) 

Fig. lb. Imaginary part of rllc (riLe) versus L/l c (L/Lc) for the col- 
lisional (collisionless) interaction. The dotted line at zero is for the 
collisionless case. 
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Fig. 2. 

X/.• c (X/Lc) 

Wave profiles at t = 25.0 for the collisional (solid lines) and 
collisionless (dotted lines) interactions. 

required pump power Pl •lall 2 by the factor 663/v is 
achieved; in the lower ionosphere this can be more than 2 
orders of magnitude. The specific pump requirements for a 
steady state interaction relevant to ELF generation will be 
discussed in a later section. 

As noted earlier, a key result due to Reitnan [1977] for 
collisionless interactions is that if the threshold conditions (28) 
are satisfied, the linear stage of the absolute instability will be 
followed by pump depletion in the nonlinear stage. It has been 
shown that an absolute instability can also be established in 
the collisional regime. Furthermore, the pump threshold is 
much lower than in the collisionless case. This threshold re- 

duction is of great practical interest, especially for applications 
to ELF generation. However, an equally important issue is 
whether the absolute instability would lead to pump depletion 
and, if so, what values of downconversion efficiency can be 
obtained. We demonstrate below that nonlinear saturation of 

absolute instabilities by pump depletion indeed occurs for col- 
lisional interactions and that downconversion efficiencies 

higher than those predicted by the Manley-Rowe relations can 
be reached. 

The feature that distinguishes the collisional from the col- 
lisionless interaction is the presence of dissipative terms in the 
coupling coefficients so that the system's action and energy are 
no longer time invariant. To see this, we obtain from (24) the 
following relations for the one-dimensional space-time evolu- 
tion: 

f;• I 4v ,a2a3) ] c• S12 dx Fllall 2 +F21a212+ IKI Re 
c•t co 1 

•3 12 2 c•-•S13=-- dx Fllal +F31a31 

(38a) 

8v ] -•--•3 IKI Re (al*a2a3) 
(38b) 

f_• 12 2 F31a312 dx [661Fllal +662F21a21 +663 

+ •vlKI Re (al*a2a3) ] (38c) 

where 

S12 = •_••dx [la•l 2 + la212] 
S13 -- •_••dx [laxl 2 4-la312] 

(39a) 

Er = • Ej Ej = dx 66•1a•12 (39b) 

Notice that the value of $ dx lal 2 is nothing more than the 
wave action (i.e., number of quanta). In the collisionless limit, 
the sums S12 and S13 of the actions and the total energy Er 
are time invariant. Equations (38) with zero on the right-hand 
side are commonly referred to as the Manley-Rowe relations. 
A direct consequence of these relations is the limitation on the 
downconversion efficiency from the pump (c01) to the signal 
(663) to a value smaller than or equal to 663/661. Extensions of 
these results to the case of weakly dissipative systems with 
ponderomotive nonlinearity (i.e., F•/% << 1) rely on the ap- 
proximate conservation of S12, S13, and Er for them to be 
solvable by IST. The IST results have been compared with 
numerical solutions of (24) with v = 0 and found to agree. 
They give the same 663/661 downconversion efficiency [Liu, 
1976]. In order to examine the effect of the thermal nonlin- 
earity we solve numerically the system of equations (24) with 
v :• 0 but F• = 0. 

For the sake of simplicity, we limit ourselves to a model 
problem in one-dimensional space-time (x, t). As a compari- 
son, the results for the collisionless interaction with symmetric 
coupling coefficients are also presented. The frequencies of the 
waves are chosen according to (11); for numerical con- 
venience, we pick, in arbitrary units, c01 = 10.1, 602 = 10.0, 
v = 1.2, and 663 = 0.1. The initial wave envelopes are rec- 
tangular, and the decay waves have small amplitudes; specifi- 
cally, we let la21/lall = 0.01, la31 = 0. Because we have in mind 
an absolute instability, we also let the decay waves have op- 
posite velocities u3x = -u2x, thus satisfying (28a). The prob- 
lem is solved in the pump reference frame so that u l• = 0. The 
pump threshold condition, (28b) or (37), is met by setting 
lall- 1.0 in the collisionless case, whereas, in the collisional 
case, la•l- IA1-1/2 =(4v/3663) -1/2= 0.25. With these values 
the respective normalized widths are the same, i.e., L/Lc = 
L/l c = 3.2, so that from Figure la one expects a growing mode 
in both interactions. 

Using the above initial conditions, the coupled system of 
equations (24) is numerically integrated forward in time. 
Figure 2 shows the time-asymptotic behavior at t - 25.0. We 
observe that pump depletion occurs in both interactions. In 
the collisionless case, the decay waves emerge as symmetric 
pulses. They are identified as solitons, as predicted by the IST 
solutions [Kaup et al., 1979]. They are consistent with the 
Manley-Rowe relations, which predict an asymptotic state 
with la2l/la31 • 1 for pump depletion. On the other hand, the 
collisional interaction exhibits nonsymmetric pulses with a 3 )) 
a2, which suggests a rather different action transfer picture 
than that described by the Manley-Rowe relations. We have 
plotted in Figure 3 the percentage change of S12 and Sx3 with 
time. While there is a moderate decrease in S12, the increase in 
S13 is dramatic. The preferential transfer of action to a 3 is 
understandable in view of the large factor v/663 in the low- 
frequency equation as compared to the small correction v/cox 
in the equation for a2. Physically, the enhancement is due to 
additional 663 photons that are being generated at a large rate 
via the temperature perturbation as a result of electron heat- 
ing by the high-frequency waves. This is achieved at the ex- 
pense of the total energy '•'r, which suffers a net loss to the 
medium as evident by the long-time decrease shown in Figure 
3. In comparison, the corresponding collisionless interaction 
displays no noticeable change in any of the three quantities 
considered. 
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Fig. 4. The energy ratio E3(t)/E2(t ) and the downconversion ef- 
ficiency E3(t)/E•(0) versus time for the collisional (solid lines) and 
collisionless (dotted lines) interactions. 

where we have used (25) and (27) for t22, t23, K, and dx in (42c). 
Recognizing 

c3D• _ -2k•x (45) 
Ok•,, 

and substituting for fi explicitly, we obtain 

IE x(z -- 0)1 - 
4me c:• O.)l OOce 

e O)pe 2 
k2x (•) 1 (46) IAlU2L 

The requirement for absolute instability leading to complete 
decay is given by (42b). Therefore the threshold electric field 
found from (46) by taking L/[½ • 2 is 

( m)(•o,•Oce)l&• 1 V/m (47) IEx(z - 0)ITaR - 400 10Lk O')pe 2 •3• IAI x/2 
For ionospheric conditions, Wce = 7.5 x 10 • rad/s and v = 2.5 
x 10-XXNTe s -x based on ion-neutral collisions' N is in 

cm-3 and T e in degrees Kelvin. Using these values, (47) can be 
written in practical units as 

IEx(z- 0)ITHR = 22(cøx • k2x (10Lkm)(105 cm- 3.) 1/2 no 

.(10X2cm-3)x/2(103OK•X/2( f 3 N T e J 100 HzJ 
V/m (48) 

The power required to achieve this can be found from (48) by 
assuming that the HF illuminated region is a square with side 
L. Then 

PTHR -- «gO c IEx(z -- 0)ITHR2/.• (49) 

From (48) and (49) we find that in practical units, 

(50) 

The threshold power scales linearly with frequency, so that it 
is smaller for the lowest frequencies for which the analysis is 
applicable. The optimum interaction region height can be 
found by maximizing the product noN. This is due to the weak 
dependence of the terms (O,)l/O,)pe) and (k2x/k3x) on the exact 
plasma parameters. We will further elaborate on these later 
on. 

We proceed next to use the above equations in the design of 
a proof of principle ionospheric heating experiment. For con- 

venience our estimates refer to the case where the magnetic 
field is perpendicular to the density gradient (Figure 5). This 
might not be the optimal case. Determination of the optimal 
geometry requires generalization of our calculation to include 
the effects of pump propagation between the ground and the 
interaction region, and the inhomogeneous structure of the 
pump near the reflection surface. These issues are currently 
under study and will be reported elsewhere. Before comparing 
the threshold conditions for the nonlinear interaction we 

examine the type of low-frequency waves of interest for our 
particular application. The dispersion relation for the low- 
frequency ionospheric modes was discussed in section 2. Refer- 
ring to typical ionospheric conditions [Gurevich, 1978], we 
note that the ion-neutral collision frequency v3 is greater than 
Wci • 220 rad/s for altitudes below 130 km, which is the region 
of interest in the present work. Therefore to excite low- 
frequency waves below 100 Hz, we must couple nonlinearly to 
the newly discovered helicon branch given by (7). As discussed 
in section 2, this branch occupies the range co 3 < v3 and ex- 
tends to very low frequencies. It is important to notice that 
contrary to the conventional situation, where the currents as- 
sociated with the low-frequency waves are carried by the ions, 
in the helicon branch the currents are carried by the electrons. 
The ion dynamics is viscously frozen because of the high col- 
lisionality (v3 > %0. Under these circumstances the Alfv6n 
and magnetosonic modes are not proper eigenmodes. 

Figure 5 is a schematic of the geometry in which two HF 
waves (co x, kx), (w2, k2) interact nonlinearly in the ionosphere 
to drive a helicon with w 3 < v3. The HF pump is incident at a 
small angle to Bo with a beam width equal to or smaller than 
the local density scale length Ln. For cox, co2 >> w 3 the reso- 
nance conditions (11) yield a k3 that propagates almost di- 
rectly downward. Such an interaction configuration can be 
achieved by grazing incidence of the HF beams at the desired 
ionospheric height (Figure 6). 

Approximate values of the required power can be found 
from (50), by taking k2x/k3x • 0.5, t e • 10 3 øK, and (D1/(Dpe • 
2. The value of cox/COve • 2 implies a 30 ø incidence angle of 
the transmitter, which is sufficient to achieve long propagation 
paths [Ginzburg, 1970]. Using these values, (50) becomes 

PmR---62(105cm-3.)(10X2cm-3)( f3 ) MW (51) no N 100 Hz 

Table 1 shows the power required to excite 100-Hz, 50-Hz, 
and 25-Hz waves as a function of height as computed by (51). 
The last column shows the required pump frequency versus 
height based on 30 ø incidence. Daytime conditions were as- 
sumed in compiling Table 1 [Gurevich, 1978]. Notice that the 
optimum interaction height is 100 km and relatively modest 

T 

vn 

Fig. 5. Geometry of three-wave interaction in the lower ionosphere. 
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Fig. 3. Percentage change in the sums of the actions S•2, S•3 and 
the total energy E T versus time. The dotted line indicates zero change 
for the collisionless interaction. 

Of particular interest to the ELF/VLF generation is the 
efficiency with which one can downconvert the pump power 
into the low-frequency wave (03- Toward this end, we have 
calculated the downconversion efficiency •3(t)/•l(0 ) for both 
the collisional and collisionless interaction. Figure 4 shows an 
order-of-magnitude (--• 20) enhancement of the former over the 
latter. Also shown is the energy ratio E3(t)/E2(t). Again we find 
that the collisional interaction assumes a much larger value 
(-,•0.8) at pump depletion. As the Manley-Rowe relations pre- 
dict, the collisionless interaction yields a value equal to the 
frequency ratio (03/(0•. = 0.01. 

The present numerical results can be shown to be consistent 
with the action relations we previously derived. Subtracting 
(38a) from (38b) and integrating in time, we obtain (Fj = 0) 

f f •dx (la3(t)12 - la2(t)12) = ----v •_••dx a (40a) (0 3 

where 

a-- õIKI ••dt Re (a•*a2a3) (40b) 
For the collisionless interaction (v = 0), (40a) simply states 
that the transfer of action to a2 and that to a 3 are identical; 
hence the appearance of symmetric pulses in Figure 2. It then 
follows directly that the energy ratio in Figure 4 should be 
equal to (03/(02, which it is. In the collisional case, (40a) 
implies a net gain in action transfer to a3, and we observe 
numerical evidence of this in the emergence of nonsymmetric 
pulses as well as in the increase in •3(t)/E2(t). An expression 
for the downconversion efficiency may be obtained from (38b) 
by an integration in time (Fj = 0) 

•3(t) (03 dx la•(0)l 2 la•(t)l 2 + a 
= (0) ro to3 '-•1 1 

It is easy to see that in the collisionless limit, the maximum 
downconversion efficiency one can achieve is (03/(0• if the 
pump is completely depleted, i.e., a•(t) = 0. In the example we 
consider, ax(t ) v• O, so that the downconversion efficiency is 
less than (03/(0•. The collisionless maximum (03/(0•, a conse- 
quence of the Manley-Rowe relations, can be exceeded in the 
collisional interaction when the collisional heating term domi- 
nates the pump depletion term, la•(t)l 2. Because of the large 

factor v/(0 3, this may occur when the three waves overlap even 
over a short duration. As Figure 4 shows, the downconversion 
efficiency indeed exceeds (03/(0• without total depletion of the 
pump. Therefore we have the new interesting result that in a 
collisional interaction the Manley-Rowe relations no longer 
set the limit for the downconversion efficiency. The determin- 
ing factor in this case is the cumulative collisional heating 
over time. The effect is most significant when the convection 
of the decay waves out of the pump is slow so that a has the 
largest integrated value possible. Under such conditions the 
downconversion efficiency exceeds the collisionless maximum 
(03/(01' 

4. STEADY STATE INTERACTION' 

ELF GENERATION 

Relevant to the ELF generation scheme is the steady state 
interaction given by (26). With the time variable replaced by z, 
the initial value problem we hitherto considered turns into a 
boundary value problem. The absolute instability found pre- 
viously, which corresponds to an oscillator in time, now de- 
scribes an amplifier in space for the low-frequency wave. In 
the nonlinear saturation stage, the pump depletes as it propa- 
gates. Because (24) and (26) are equivalent systems, it is 
straightforward to see that the conditions for absolute insta- 
bility in the steady state case are 

and 

where 

/•2/• 3 < 0 (42a) 

L > 1.8/, (42b) 

It•2t•31 a/2 
[c - Iœ%(z - 0)11AI (42c) 

Since u2=, u3= > 0, (42a) coincides with (28a) while (42b) can be 
shown to be identical to (37), i.e., •'c -lc, if one replaces the 
initial condition a•(t = 0) in lc by the boundary condition 
•(z = 0). It follows that the conclusions of the nonlinear 
analysis for the time-dependent case apply to the steady state 
interaction as well. Rather than energy, here one looks at the 
downconversion of HF power into the ELF/VLF signal. In 
analogy with (41), we can write the power downconversion 
efficiency out to a distance z as 

P3(z) _ (03 dx Id•(0)l 2 -la•(z)l 2 + -- a(z) 
P•(0) (0• (03 

where 

ß [f_••dxld•(O)[2] -• (43a) 
Pj = %la•l • (43b) 

ß a(z) = õ1œ1 dz Re (•1'•2•3) (43c) 

Therefore, in the collisional limit, the amount of ELF power 
one can generate may exceed the collisionless maximum 
(03/(0• set by the Manley-Rowe relations, even when total 
pump depletion does not take place. 

Of great practical interest to the ELF generation is the 
pump requirement for absolute instability. From the definition 
of [c, we can solve for the incident pump field 

ro• I •D2•D3 I 1 IE(z - 0)1 = IAIr/[c (44) 
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Fig. 6. Schematic of practical ELF generation scheme by grazing incidence of two HF heaters in the ionosphere. 

power is required. We would like to stress that the values in 
Table 1 are indicative rather than exact. We feel that the 

assumption of Te • 103 øK is very conservative and T e • 3-4 
x 103 øK is more realistic. This will reduce the power require- 

ment by factors of 3-4. On the other hand, a variety of propa- 
gation losses have been neglected. These will be considered in 
the future. It is interesting to note that PT.R ~ (l/n0) (l/N). 
Therefore further reduction in PmR could be achieved if we 
could increase the local ionization by long-pulse radiation 
previous to the beat excitation. 

5. SUMMARY AND CONCLUSIONS 

We have examined stimulated excitation of ELF waves in 

the lower ionosphere by the use of two HF pumps. Previous 
work [Papadopoulos et al., 1982, 1983] addressed the exci- 
tation of Alfv6n and magnetosonic modes by similar tech- 
niques. However, since for ionospheric conditions, v3 _> rOci up 
to 150 km, excitation of these modes is possible only above 
that height. The thermal ponderomotive force driving the in- 
teraction is proportional to the electron-neutral collision fr e - 
quency v, which is by more than 2 orders of magnitude 
smaller above 150 km than near 100 km. The discovery that 
the helicon mode (C. R. Menyuk and K. Papadopoulos, pri- 
vate communication, 1984) is a proper eigenmode of the 
system even for frequencies with to 3 < v 3 allowed us to reduce 
the threshold for excitation of ELF waves below 100 Hz by 
more than 2 orders of magnitude, by coupling to the helicon 
mode in the vicinity of 100 km altitude. In addition to focus- 
ing on the helicon mode, a more detailed description was 
presented of the parametric decay processes in dissipative 
media discussed previously in a letter [Papadopoulos et al., 
1983]. As noted, a more comprehensive analysis including the 

TABLE 1. Threshold Power for Excitation of 100-, 50-, and 25-Hz 
Waves Versus Ionospheric Heights 

PTHR, MW 
Height, f•, 

km 100-Hz 50-Hz 25-Hz MHz 

90 15 7.5 3.75 2.5 
100 8 4 2 5 

110 26 13 6.5 6 
120 60 30 15 6.4 

The last column gives the required pump frequency (based on 
equation (51 )). 

effects of oblique propagation of the pump from the ground to 
the ionosphere, the inhomogeneous structure of the pump in 
the interaction region, the inhomogeneous structure of the 
ionosphere, and a self-consistent description of the electron 
heating will be required to support proper experimental effort. 
Meanwhile the paper should be used as a guide to the physics 
expected during the interaction and the approximate design of 
ionospheric heaters required for a proof of principle experi- 
ment. 

Before closing we should note that S. Ganguly and W. 
Gordon (private communications, 1984) reported preliminary 
evidence for beat wave generation for frequencies between 10 
and 40 Hz, using the Arecibo HF facility. Their results were 
consistent with power threshold scaling increasing linearly 
with f3. The preliminary nature of the experimental results and 
the fact that the interaction region was in the F rather than 
the E region, where heat conditions, neglected in our analysis, 
dominate the energy transport, do not allow for a quantitative 
comparison of our theory with the experiment. 

APPENDIX 

The plane wave perturbations in a resonant three-wave in- 
teraction satisfy the fluid equations (8)-(10) as follows' 

v+• e (E+ iv) me 
vxB0 ,., + 

c (co + iv) m e 

[ evxB iv) v. Vv q- me C me o•,k 

nok. v i!'V' nv],oj, 
n .... (A2) 

2 T0k.v 
3 (to + iAv) 

(to q- iAv) 
Iv. VT - -•(VmeV - TV). (A3) 

The subscripts to, k for the square brackets indicate that the 
appropriate convolution product of the other two waves is 
taken to meet the matching conditions of (11). Equations 
(A 1)-(A3) can be solved perturbatively. 

Our main interest concerns the decay of a high-frequency 
electromagnetic pump wave (to 1, kl) into a high-frequency 
sideband ½02, k2) and a low-frequency mode (to3, k3) in the 
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collisional regime. If we assume that the pump wave and its 
sideband have frequencies 0)•,2 >> 0)ce, the electrons are un- 
magnetized, and the left-hand sides of (A1)-(A3) yield, to 
lowest order, their driven velocities in the linear, cold limit, 

L ieE•,2 ( 1 iv) (A4) ¾1,2 -- me0)l,2 O')1,2 
By choosing the pump and sideband field polarizations as 
E•, 2 -- E•,2y, we see from the left-hand sides of (A2) and (A3) 
the associated linear density and temperature perturbations 
vanish (in the (x, z) geometry), i.e., 

L T• L = 0 (A5) n1,2 = ,2 

since the high-frequency waves are electromagnetic. For the 
low-frequency wave, the magnetized, cold, linear response as 
given by the left-hand sides of (A1)-(A3) is 

V3 œ = i0)3œ3e' E3 (A6) 
4r•eno 

nok 3 ß V3 œ 
n3 œ -- (A7) 

0) 3 

2 Tok 3 ß ¾3 L (A8) T3œ -- • (•-3 ½' iX'•- ) 
where •3 e is the electron contribution to the cold plasma di- 
electric tensor. 

At the next order, we evaluate the thermal and nonlinear 
terms on the right-hand sides of (A1)-(A3), using the lowest- 
order solutions, (A4)-(AS). It can easily be seen that there is no 
nonlinear modification to the density at all three frequencies 
(i.e., right-hand side of (A2) vanishes), 

nj sL = 0 j = 1, 2, 3 (A9) 

whereas the nonlinear temperature perturbation is due only to 
ohmic heating, 

2 ie 
Tf qL = - (A10) 3 (0)• + iAv) [Vmet92]o9J'kJ 

Since the thermal pressure does not affect the electron veloci- 
ties at high frequencies, we find, using (A1), the nonlinearly 
perturbed velocities 

E3NL ik3T3 NL [ vL X B] - + --E3 T+E3 e (A14) 
e c o93,k3 

Here, the ponderomotive field is entirely due to the E x B 
drift of electrons. For our parameters of interest, the linear 
thermal pressure hoLT3 turns out to be negligible and has been 
ignored. 

The nonlinear current densities that drive the high- 
frequency waves 0)•, 0)2 are due to the nonlinearly perturbed 

L 

s•. and to the beating of the linear velocities v•,2 velocities Vl,2 
with the low-frequency density perturbation n3 œ, 

NL__-e[noV NL L] J• • + n3Lv2 
(A15) 

J2NL= --e[noV2 NL q- n3L*Vl L] 

where the asterisk denotes the complex conjugate. We keep 
only the second of the two contributions to Jx,2 NL since it can 
be shown that its effect is greater by the ratio of high- 
frequency to low-frequency phase velocities. Expressing n3 œ, 
v 1,2 L explicitly in terms of the electric fields via (A4), (A6), and 
(A7), equations (A15) become 

, 

e E2(i•22) = - 1 -- (k 3 ß œ3 e. E3) j•NL 4•me 0)2 
(A16) 

41rm e 0) • 

The low-frequency nonlinear current density, however, is 
caused solely by the nonlinearly perturbed velocity, i.e., 

$3 m' = -enov3 se (A17) 

because all high-frequency density perturbations vanish. The 
two nonlinear fields that drive v3 sI' are evaluated separately. 

filL, Substituting (A10) for T 3 we have for the thermal field 

k3 œ œ* (A18) E3 T -- •Vme m Vl ø¾2 
0)3 

where Av has been neglected when compared to 0)3. If one 
replaces v x,2 L by (A4), applies the frequency matching con- 
dition, and assumes 0)a • 0)2, E3 r may be further reduced to 

E3T= _ _4 e.•y._v (E•. E2* ) k3 (A19) 
3 me0) 3 0)10)2 

where 

NL 

SL ieE•.2 (A11) V1,2 --- • 
me(0)l, 2 q- iv) 

NL ik 1,2 T 1,2 q- q- __ El,2 = e c o91,2,kl,2 
T f (A12) --= E•, 2 + E•,2 

To arrive at (A1 1), we have combined the terms on the right- 
hand side of (A1) with the electric field term on the left-hand 
side and defined the nonlinear fields E•,2 sL which contain, in 
addition to the ohmic heating, E•,2 r, the ponderomotive con- 
tributions within the square brackets, i.e., E•,2 •'. In a similar 
fashion, the nonlinearly perturbed velocity at low frequency is 
given by 

I/3 NL i0)3e3 e ß E3 NL = (A13) 
4rceno 

where 

Similar treatment on the ponderomotive field 

vl œ X B2* + v2 œ* x B• 
f - (A20) E 3 - 

yields 

i2v ie (El ß E2*) k3 + E3 •' .... ka (A21) 
me 0)10)2 0)1 

where we have related Bx,2 to E•.2 via Faraday's law and have 
made simplifications using vector identities. Dropping the 
contribution proportional to k• because it is smaller in com- 
parison to k3, we finally obtain 

j3 NL 
e o) 3 

4rOme 0)10)2 i4v • •3 e. k3(E•. E2*) 1 + •3o3] (A22) 
It is clear from (A22) that the thermal nonlinearity dominates 
when v/0)3 >> 1, introducing an equivalent enhancement factor 
as well as a r•/2 phase difference. 
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