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Density irregularities and spectral broadening

I Demeter passes over VLF
transmitters often show spectral
broadening of narrowband VLF
pulses.

I Believed to be caused by QE
whistler mode waves excited by
transmitter signals as they
propagate through small-scale
plasma density irregularities.

I The very fine-scale structure of the
irregularities is unknown
(insufficient sampling rate).

I The input wave energy loss due to
the excitation of QE waves may be
related to the apparent 20 dB wave
power deficit reported by Starks et
al. [2008].

Demeter pass
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Mode conversion in an anisotropic medium

I Any inhomogeneities can excite
additional modes.

I Snell’s law - tangential
component of the refractive is
conserved.

I The presence of the resonance
cone makes the process a lot
more interesting.

I Short-wavelength (QE)
modes.

I Very different group and
phase velocity directions.

I Strong angle dependence.
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Questions

Questions we wish to answer:
I What conditions are necessary for strong excitation of QE

modes?
I How much power can be converted into QE modes through

linear scattering alone?
I How much power is lost to collisions and damping?
I What is the actual fine-scale structure of the irregularities (need

better data!).
I How do irregularities above powerful transmitters develop?
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Full-wave method

I Snell’s law: k|| is
conserved.

I Reflection and
transmission
coefficients: yield
relationship between
mode amplitudes at
each layer.

I System is solved to yield
all mode amplitudes.

I Modes are summed.
I Repeat for all possible k

in the system.
I Documented in Lehtinen

and Inan [2008].

Layered media approximation
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Problem geometry

Scattering and mode conversion

Ionosphere boundary

I By Snell’s law, the component of
−→
k parallel to the layers is

conserved.
I Four possible scattered modes: forward and backward whistler (FW

and BW) and forward and backward quasielectrostatic (FE and BE).
I Periodic layers can preferentially excite one mode.
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Preferential mode excitation

I Right: illustration of Bragg-like
scattering.

I Consider the case of a single Fourier
mode of the plasma density
distribution.

I Perturbation theory predicts a linear
increase in QE wave power when the
irregularity period matches the target
QE wave.

I In reality the process quickly saturates.
I Perturbation theory fails at even

moderate perturbation amplitudes
(right bottom).
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Perturbation

Perturbation function

I NL - Length of scattering region (periods)
I δN0 - density perturbation magnitude
I λ0 - nominal spatial wavelength of the excited QE mode
I κ - variation about the nominal irregularity period λ0
I λ - spatial wavelength of the irregularities
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Saturation

Saturation is caused by two competing
processes:

I conversion to the QE mode by
linear scattering, and

I conversion back into the
whistler mode, by exactly the
same process. This is evident
from the plot on the right.

I The initial power loss of the input
wave is 7 dB after the wave has
propagated 1km across the
irregularities.

I If the QE waves were heavily
damped, the input wave would
continue to lose power.
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Ideal matching: κ = 1.0

κ = 1.0 (ideal scatterer)
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I Figure of merit is the ratio
of power converted into
the QE mode.

I Nominal scattering period
λ0 is about 30 meters
(perpendicular to B0.

I The QE mode propagates
approximately 30 km
parallel to B0 for every 1
km perpendicular to B0.

I General trend - increasing
conversion to a maximum,
then leveling out and
decaying.

I Attained maximum is
relatively constant.
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Nonideal matching

κ = 0.94 (shorter than ideal)
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I Attained maximum in the
forward mode is increased
slightly (less than 5%).

I No smooth decay - energy
sloshes back and forth
between the QE and
whistler modes.

I Loss of matching at high β
slightly ameliorated by
shortening the scattering
period.
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Nonideal matching

κ = 1.06 (longer than ideal)
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I Attained maximum is
decreased.

I No smooth decay - energy
sloshes back and forth
between the QE and
whistler modes.

I Forward matching
completely destroyed (no
modes available at this
scattering length).

I Relatively large
backscattered mode.
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Simple scattering

I Simple sinusoidal scatterers obviously
aren’t realistic.

I Actual distribution is unknown down to
the very fine scale.

I Two new ideas are needed:
I Irregularities with a bandwidth -

Real irregularities should have some
range of length scales.

I Natural “coherence length” - A
coherent interaction is only valid so
long as the properties of the
background medium don’t change
much. 8 9 10 11
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Randomized trials - Fourier mode sums

The irregularities are constructed as a sum of M Fourier modes:

N(x) = N0 +
M∑

i=1

Ai cos(kix − φi),

I N(x) - the plasma density.
I N0 - the background plasma density.
I Ai - The mode amplitude for mode i .
I ki - The wavenumber for mode i .
I φi - Phase shift for mode i .

Procedure: Select from uniform distributions over some reasonable
range. Repeat for 400000 random trials.
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Randomized trials - Fourier mode sums

Our figure of merit is the ratio of power converted into the QE mode, α.
We plot:

prob(αQE,f + αQE,b ≥ α) ≥ p0

for some fixed value of p0, e.g. p0 = .25.
This is a proxy for relative likelihood of a given conversion efficiency over
some set of parameters.
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Randomized trials - Fourier mode sums

Fourier mode sums
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For the Fourier mode sum experiments:
I A large number of modes do not favor strong QE mode scattering.
I Saturation is still present.
I Likely QE power conversion ratios are still in the range of 50%.
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Randomized trials - Random Phase Shifts

Idea: disrupt conversion back into the whistler mode by introducing a
random phase shift between coherent segments:

Randomized coherence length

Coherence
Length

Random phase shifts

Justification: The real world is not 1D and the plasma properties
change with altitude.
We conduct a similar set of trials, this time randomizing the phase
shift and the average length of a coherent segment.
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Randomized trials - Random Phase Shifts

Random phase shifts
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Results show the possibility of strong scattering into the QE mode,
in excess of 90%, but at a relatively low probability of less than 2%.
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Randomized trials - Random Phase Shifts

Random phase shifts
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Results also hint that partly incoherent scatter over long
scattering regions may be important.
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Randomized trials - Random Phase Shifts

I Interesting trend when we
plot the phase shifts for
strong scattering
configurations (right).

I Histogram shows relative
phase shifts of π and π/4
favor strong scattering.

I Interesting result, but
probably not practically
important.
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Losses

I Collision frequency = 1 and
10 s−1.

I Electron distribution taken
from averaged satellite
observations within the
plasmasphere.

I Losses not dominant unless
the refractive index n is
large.

I Prediction: will manifest as
a sharp “cutoff” on
propagation to the
conjugate region.

Loss rates - damping and collsions
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Density Measurements
Recent spacecraft plasma density measurements

Spacecraft Sampling rate Altitude
DEMETER 1/sec ˜700 km
ISIS 1 60/sec 570 - 3500 km
FREJA 100/sec 600 - 1760 km
AUREOL 3 1000/sec 400 - 3000 km

I AUREOL 3 observations at high latitude showed that when small scale
plasma density irregularities were present, so also was a band of ELF
turbulence in the 25 - 100 Hz frequency range.

I It was found that the ELF turbulence was due to quasi-electrostatic E fields
associated with the small scale irregularities.

I The power spectral density of the ELF turbulence and the plasma density
fluctuations were very similar, varying as k−1.8.

I These high latitude results may not hold at low- to mid- latitudes.
I Simulations are needed to determine the relationship between small scale

plasma density irregularities and ELF turbulence at low- to mid-latitudes.
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Conclusions

I Linear mode conversion to QE modes is consistent with
observations of spectral broadening.

I Power lost to QE modes is most probably in the range of 3-10 dB.
I Probability of the >10 dB cases is rather low over the parameters

investigated, less than 2 %.
I Short coherence lengths favor strong QE mode conversion.
I Results suggest that some power loss by QE wave excitation is

pervasive and common, but may only account for a portion of
the 20 dB deficit reported by Starks et al. [2008].

I The actual distribution of small scale irregularities may favor
more power loss than our general model indicates.



Background Results Conclusions

Limitations

I Layered media approximations can never capture the full range
of scattering effects in 3D (spreading loss, diffraction).

I Full 3D simulation of QE scattering remains a very hard problem.
FDTD and other similar techniques have difficulty resolving very
high wavenumbers.

I No heating or other sources of loss (aside from Landau damping
and collisions) are considered.

I The parameters chosen are reasonable but may not adequately
reflect the actual spatial gradients in the electron density. Higher
resolution measurements are needed.
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