Two ion species studies in LAPD* Ion-ion Hybrid Alfvén Wave Resonator

G. J. Morales, S. T. Vincena, J. E. Maggs and W. A. Farmer

Experiments performed at the Basic Plasma Science Facility (BaPSF)

Sponsored by: ONR-MURI

*S. T. Vincena, G. J. Morales and J. E. Maggs, Physics of Plasmas 17, 052106 (2010)

Motivation

•Shear Alfvén waves in two-ion species plasmas (a.k.a. ion cyclotron waves, EMIC, ion-hybrid waves etc..) interact strongly with ions

•Altitude-sensitive noise detected by spacecraft in H+-He+ geoplasma

5. M. Temerin and R.L. Lysak, J. Geophys. Res. 89, 2849 (1984).

•Ion acceleration in solar corona

6. K. G. McClements and L. Fletcher, Astrophys. J. 693, 1494 (2009).

•Possible wave resonators in equatorial region of planetary magnetospheres----RESONANCE MISSION

7. A.V. Gigliemi, A.S. Potapov, and C.T. Russell, Pis'ma v ZhETF 72, 432 (2000).

8. A. G. Demekhov, V. Y. Trakhtengerts, M. M. Mogilevsky, and L. M. Zelenyi Adv. Space Res. 32, 355 (2003).

Essential Physics--I

For small transverse scales the compressional mode is evanescent

Shear Alfvén wave dispersion relation is well approximated by $k_{II}^{2} = \left(\frac{\omega}{c}\right)^{2} \varepsilon_{\perp} \left[1 - \left(\frac{k_{\perp}c}{\omega}\right)^{2} \frac{1}{\varepsilon_{II}}\right]$ **B**₀ For two cold ion species $\varepsilon_{\perp} \approx \frac{\omega_{p1}^2}{\Omega_{\perp}^2 - \omega^2} + \frac{\omega_{p2}^2}{\Omega_{2}^2 - \omega^2}$ Perpendicular dielectric vanishes at $\omega_{ii} = \sqrt{\frac{\omega_{p1}^2 \Omega_2^2 + \omega_{p2}^2 \Omega_1^2}{\omega_{p1}^2 + \omega_{p2}^2}}$ and singular at $\omega = \Omega_1$ and $\omega = \Omega_2$

Essential Physics--II

Frequency \mathcal{O} and k_{\perp} are set by source

Axial cut-off occurs when $\mathcal{E}_{\perp}=0$

For cold ions at $\omega = \sqrt{\frac{\omega_{p1}^2 \Omega_2^2 + \omega_{p2}^2 \Omega_1^2}{\omega_{p1}^2 + \omega_{p2}^2}} \equiv \Omega_{ii}$

But when $k_{\perp}\rho_i$ is not negligible

$$\varepsilon_{\perp} = 1 + \left(\frac{\omega_{pe}}{\Omega_{e}}\right)^{2} - 2\sum_{s} \left(\frac{\omega_{ps}}{k_{\perp}\rho_{s}}\right)^{2} \sum_{l=1}^{\infty} \frac{e^{-(k_{\perp}\rho_{s})^{2}} I_{l}\left(k_{\perp}^{2}\rho_{s}^{2}\right)}{\omega^{2} - \left(l\Omega_{s}\right)^{2}}$$

Vanishes at frequencies corresponding to "pure" IBW

<u>Consequence</u>: shear Alfvén wave experiences multiple propagation bands between the lower and the higher cyclotron frequencies that become more pronounced at large ion temperatures or small transverse scales **Effect of Species (He/Ne) Concentration for Cold Ions**

Contour in "frequency-radial position space" at fixed axial location *z* **= 4** *m*

Radial position across magnetic field

Typical LAPD parameters $N_e = 10^{12} \text{ cm}^{-3}$; $B_0 = 750\text{G}$; $T_e = 5 \text{ eV}$; $T_i = 0$; a = 1 cm

Modification of Cold Propagation Gap by Ion Temperature

Contour in "frequency-radial position space" at fixed axial location z = 4 **m**

Typical LAPD parameters $N_e = 10^{12} \text{ cm}^{-3}$; $B_0 = 750\text{G}$; $T_e = 5 \text{ eV}$; 50%He-50%Ne; a = 1 cm

Comparison of Spatial Pattern (z, r) for Different Frequencies

Typical LAPD parameters $N_e = 10^{12} \text{ cm}^{-3}$; $B_0 = 750\text{G}$; $T_e = 5 \text{ eV}$; a = 1 cm

Comparison of Spatial Phase-Pattern (z, r) for Different Frequencies

Radial position across magnetic field

Typical LAPD parameters $N_e = 10^{12} \text{ cm}^{-3}$; $B_0 = 750\text{G}$; $T_e = 5 \text{ eV}$; a = 1 cm

Effect of Increasing Ion temperature

Frequency dependence of $|\tilde{B}_{\theta}(\omega,r,z)|$ at a fixed position z = 4 meters, r = 3 cm

Typical LAPD parameters $N_e = 10^{12} \text{ cm}^{-3}$; $B_0 = 750\text{G}$; $T_e = 5 \text{ eV}$; a = 1 cm; 50%He-50%Ne

Large Plasma Device (LAPD)

Changing concentration ratio – Helium/Neon mix

Measured frequency-radial dependence at fixed z = 4.8 m of wave magnetic field

Essential Physics--III

Frequency $\boldsymbol{\omega}$ and k_{\perp} are set by source

Axial cut-off occurs when $\mathcal{E}_{\perp} = 0$ For cold ions at $\omega = \sqrt{\frac{\omega_{p1}^2 \Omega_2^2 + \omega_{p2}^2 \Omega_1^2}{\omega_{p1}^2 + \omega_{p2}^2}} = \omega_{ii}$ Since $\omega_{ii} \propto B_0(z)$

Waves can be reflected from a magnetic –field ramp

Effect of a magnetic step in a two ion plasma

A resonator can be achieved in a magnetic well

Theoretical Model

1) Approximate experimental magnetic well by two uniform regions connected by linear ramp

Approximate antenna by a line current source at frequency ω

$$j_{z}(r,z,t) = \begin{cases} j_{0} (\Theta(z-a_{1}) - \Theta(z-a_{2}))e^{-i\omega t} & x < R \\ 0 & otherwise \end{cases}$$
$$\tilde{j}_{z}(k_{\perp},z,t) = \frac{Rj_{0}}{k_{\perp}} J_{1}(k_{\perp}R)e^{-i\omega t} (\Theta(z-a_{1}) - \Theta(z-a_{2})) \\ \frac{\partial S_{z}}{\partial z} \propto \delta(z-a_{1}) - \delta(z-a_{2}) \end{cases}$$

18

Matching piecewise analytic solutions at 6 axial boundaries

Solution for Fourier component of electric field $\tilde{E}_{x}(k_{\perp},z)$

$$\begin{array}{ll} \textbf{Outside well} & \left\{ \begin{matrix} C_{1}e^{k_{2}(z+l_{2})} & z < -l_{2} \\ C_{2}\text{Ai}(-\alpha(z+z_{0})) + C_{3}\text{Bi}(-\alpha(z+z_{0})) & -l_{2} < z < -l_{1} \\ C_{2}\text{Ai}(-\alpha(z+z_{0})) + C_{3}\text{Bi}(-\alpha(z+z_{0})) & -l_{2} < z < -l_{1} \\ C_{4}e^{ik_{1}(z-a)} + C_{5}e^{-ik_{1}(z-a)} & -l_{1} < z < a \\ C_{4}e^{ik_{1}(z-a)} + C_{7}e^{-ik_{1}(z-a)} & a < z < l_{1} \\ C_{6}e^{ik_{1}(z-a)} + C_{7}e^{-ik_{1}(z-a)} & a < z < l_{1} \\ C_{2}\text{Ai}(\alpha(z-z_{0})) + C_{3}\text{Bi}(\alpha(z-z_{0})) & l_{1} < z < l_{2} \\ C_{10}e^{-k_{2}(z-l_{2})} & z > l_{2} \\ \end{array} \right\}$$

• Relate B_{\boxtimes} to E_r through Faraday's Law, and invert the Hankel transform using antenna spectrum

$$B_{\varphi}(r,z,\omega) = \int_{0}^{\infty} \frac{Rj_{0}}{k_{\perp}} J_{1}(k_{\perp}R) \tilde{B}_{\varphi}(k_{\perp},z) J_{1}(k_{\perp}r) k_{\perp}dk_{\perp}$$

19

Eigenfunction of Lowest-Frequency Trapped Mode at 568 kHz

Theory

Dependence of trapped mode frequency on concentration ratio

Ratio of hydrogen density to electron density

Resonator eigenmodes excited by a current pulse in a magnetic well

Wave trapping occurs by reflection at ion-ion hybrid resonance

Magnetic field spectra measured inside the magnetic well

Magnetic field spectra measured outside the magnetic well

Effect of decreasing hydrogen density (at fixed electron density) on magnetic field spectra inside the magnetic well

Perspective on ion-ion hybrid Alfvén wave resonator

- •Experimentally have demonstrated that a magnetic step prevents wave penetration into high-field side --a necessary condition
- •Pulsed excitation in a magnetic well shows formation of trapped eigenmodes with low "Q" values

Key issues:

•How large is the dissipation near the ion-ion hybrid reflection layer ?
•Can an ion beam or a plasma current trigger maser behavior?
•Nonlinear interaction with ions and electrons

Extra Slides

Effect of anomalous damping at reflection layer on spectrum

an effective imaginary part is added to \mathcal{E}_{\perp} near reflection point

