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Abstract. We discuss in this paper the ~tructure of moving fronts, wave motions and 
seii-excirarion of osciiiaiions irom the point of view of the contact transport in a gas-iikc 
medium. The generalized equation o f  a contact transport in a system of free moving 
elements located far apart rrom each other i s  formulated, The parameters of contact, 
properties and distribution of elements are in general some runctioni of time. Several 
important solutions o f  these equations are obtained and analysed. Applications to other 
related problems such as spread of a contagious disease and percolation are briefly 
discussed. 

1. Introduction 

The  transport processes in gases and  plasma have been widely discussed. The  approach 
is based on the solution of equations of transport for different macroscopic parameters: 
density, momentum, temperature and charge. These equations are found in relation 
t o  collisions of atoms (or  molecules) moving in an external field. Sometimes, as with 
the chemical kinetics of polyatomic molecules, freely moving particles may interact in 
a complicated way. In fact, the properties of such particles may vary in time thus 
affecting their interactions. This allows another possible interpretation of the above 
transport processes in gas-like systems in terms of mathematical theory of contagious 
diseases. Because of this analogy, it is convenient to consider the above particles as 
elements. In the language of the deterministic epidemic model the freely moving objects 
(which we call infectious) are contacting the elements of background (which we call 
susceptibles) [l]. Different methods have been applied for the treatment of the above 
problems. In the mathematical theory of epidemics based on time varying processes 
the simplified form of the integral of contact transfer has been used [Z-51. The processes 
of the propagation in space have been studied numerically based on computer models 
described in [6,7]. The transport phenomena in strongly non-uniform systems have 
been studied using the methods of directed percolation theory [S-101. The ideas of 
the mean-field renormalization group have also been applied to the contact process [ 1 I]. 

The goal of the present work is to develop a n d  to analyse generalized equations 
of a contact transport inside a non-uniform system of freely moving elements located 
far apart from each other. The parameters of contact, properties and distribution of 
elements may be some functions of time. A few important solutions of these equations 
will be discussed. 

i Permanent address: Lebedev Institute or Physics. Moscow, USSR. 
i Present address: Astronomy Program. University of Maryland, College Park. M D  20742, USA 
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This paper is organized as follows. The main features of contact transport inside 
a gas-like media are discussed in section 2. The equations of contact transport are 
obtained in section 3 while section 4 is devoted to the investigation of the possibility 
of propagation of nonlinear waves in the medium just described. It is found that two 
steady states can exist in such a system. The stability of these states is investigated in 
section 5 along with the possibility of the self-excitation of oscillations. The transport 
processes in strongly non-uniform systems are discussed in section 6 while section 7 
is devoted to a brief discussion. 

2. Statement of the problem of contact transport 

Consider the system containing a large number of Qi elements, which are distributed 
in space and moving in an arbitrary way. We shall call this system a background. It 
is assumed, by analogy with gases, that the average size of an element a is significantly 
less than the average distance d between them d >>a. If N is the average density of 
such elements of the background, then a is proportional to N-"s or N-'" depending 
on whether the distribution of elements is spatial or planar. Moving elements are 
allowed to approach each other up to a distance p, which is less than the average 
distance between the elements, i.e. d > p >> a. We shall call this single event a contact. 
Contacting elements can interact and keep close to each other for some long time or 
can pass by sufficiently close by each other. 

Assume now that there are some of the elements of the background that may possess 
a specific property. We will call them carriers. It is assumed that this property can be 
transferred to the rest of the elements by the above defined contact with the carriers. 
It means that this property can propagate by means of contacts. We will call this 
process of propagation the contact transport. 

The effectiveness of the contact transport depends upon the elements. Hence, 
ultimately it depends on the characteristics of a contact: the way it moves, how often 
it occurs, how long it lasts, etc. The contact parameters are defined by the background. 
Finally, the transfer of a property during contact is important. This transfer depends 
upon the distance between contacting elements, duration of the contact, the time 
interval between the contacts and the instant when the carrier first acquired some 
property, i.e. the 'memory' of the system. The last effect is influenced by the peculiarities 
of the transport of this certain property rather than by the parameters of the background. 

It will be shown below that the transport process can be determined completely if 
the statistical characteristics of the background as well as the parameters of the contact 
transfer of some property are known. 

3. The equations of contact transport 

To formulate the equations of contact transport, let us assume that n(r, 1, f l )  is the 
differential density of carriers, This means that the number of carriers in a unit of 
volume at the point r, which acquired the certain property between the time t ,  and 
t ,  + d t ,  ( t >  t I )  is n(r, t, 1 , )  d t , .  The total density of carriers is given then by: 

(3.1) 
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The introduction of the differential density indicates that the properties of elements 
of the gas-like system can vary in time, unlike the ordinary gases. Therefore the 
effectiveness of the contact transfer of the specified property might depend on the time 
interval f - f ,  following after the instant when the property has been first acquired by 
the carrier. 

The equation of contact transport (ECT) is obtained for the differential density of 
carriers n( r ,  1, f , ) .  The variations of the differential density is due to the spatial transport 
of carriers as well as because of the transfer of a property to the elements of the 
background by contacts. The spontaneous losses can be taken into account by writing 
the ECT in the form: 

a n / a r = S + J - R n .  (3.2) 

Here S is the operator of convective transport, J is the integral of contact transfer, 
and R is the function of sponraneous iosses. 

Let us discuss these expressions in detail. The operator of convective transport S 
is defined by the motion of the elements of background for which the statistic charac- 
teristics are assumed to be known. The operator S has the general form: 

S = ( l / A f )  K ( r , f ; r ' ,  r ' ) n ( r ' , f ' ,  t,)dr'-Ko(r, t, f ' ) n ( r ,  1, f , ) ]  (3.3) 

where K ( r ,  f ;  r', 1') is the correlation function which is essentially the probability of 
finding the element of the background at the moment f' at  the point r' moving into 
point r at the moment f. The function Ko(r, f , f ' )  is given by  

il 

1 Ko(r,  f , f ' ) =  K(r,f;r ' , ! ' )dr '  (3.4a) 

(3.46) K ( r ,  f, r', f ' ) =  K ( r ' ,  f', r, f ) .  

According to equations (3.3) and (3.4) the operator S satisfies the conservation of 
the total number of elements: 

J S d r = O ,  (3.5) 

The integral of contact transfer represents the number of new carriers appearing at 
the given moment f in a unit of time df and volume d r  near the given point r. This 
takes place due to transport to the elements of the background of the specific property 
by contacts with carriers. The integral of contact transfer is given by 

J ( r , f , f , ) = B ( r , f ) 6 ( f - f , )  

(3.6) 
B ( r , f ) =  v(r, 1, f - f , ) n ( r ,  f, f , ) d f , .  I"' 

Here the delta function 8, guarantees that the contact transfer takes place at the moment 
I. Therefore 1 ,  = 1 for all new-bom carriers. In (3.6) U is the frequency of contact 
transfer, i.e. the number of contacts at the point r, f produced by the carrier which 
acquired some property at time f , .  It is obvious that the value of Y is directly 
proportional to the density of elements of the background, 

u(r ,  f , t - f , ) = ( N e - N ) P ( r ,  f , f - f , )  (3.7) 
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where N<, is the density of background elements, N is the total density of carriers and 
IS is the average efficiency of a contact transfer given by 
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where q =q(q, ,  q 2 , .  . .) are the parameters of contact, such as its duration T, minimum 
distance between the contacting elements p. the angle of contact Cl,  which becomes 
important if the elements are anisotropic, etc. This defines F as a function of contact 
which shows the probability of contact at a given point r, f having parameters q. The 
function of contact F depends upon the properties of the background. This function 
is normalized in the usual way as, 

F d q = l .  (3.9) I 
The efficiency of the transfer of this certain property during contact with parameters 
q is described by the function P (  r - I , ,  4). This shows the probability of transfer of 
this property with contact parameters q to an element of background while the carrier 
first acquired this property at time I , .  The efficiency P corresponds to the multiplication 
of the scalar velocity of molecule U by the cross section U of interaction as is known 
from the dynamics of ordinary gases. Finally, R(r - f , )  defines the average speed of 
spontaneous losses of a certain property by carriers. 

The Cauchy problem for equation (3.2) is totally defined in the absence of boun- 
daries by the given initial function 

n ( r ,  r = 0, f ,  = 0) = n o ( r ) .  (3.10) 

The solution of ECT can be found using the sum of the solutions of the linear equation 

(3.11) a n / a t  = s - ~n 

with initial functions n ( r ,  I , ,  I , )  = i i ( r ,  1 , )  assigned at the instant t =  f ,  by 

i i ( r ,  f , ) =  B ( r ,  f , )  = u(r ,  f , ,  t, - t ' ) n ( r ,  t l ,  f') df.  (3.12) 

Here the function n o ( r ) =  n ( r ,  0,O) is defined by the initial condition (3.10), and t, is 
the continuous parameter of equations (3.1 1) and (3.12). These equations are equivalent 
to ECT (3.2) with the initial condition given by equation (3.10). The total density of 
carriers can be found using (3.11), (3.12): 

I<: 

1,: JN/af = S ( N ) +  ( v - R ) n ( r ,  f, f , )  d f , .  (3.13) 

S ( n )  d f , ,  which can be proved by integrating both sides of (3.3) over 

I t  should be noted that equation (3.2) can be easily extended to describe the 
transport in the non-uniform background consisting of groups (or layers) having 
different distributions and functions of contacts. The ECT which accounts for the above 
different groups are written for each group of carriers n, ( r ,  I, f , ) :  

Here S( N )  
d f , .  

Jn, /Jf  = &+E Bw,8( t - f l )  - Rhni (3.14) 
L '  
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where the operators of transport S, and the integrals of contact Elk, can be described 
by (3.3)-(3.7) replacing n with n,, and No- N with Nux - N k .  The solution of the. 
Cauchy problem for the system of equations (3.14) can be found in the same way as 
for (3.11), (3.12). If the group distribution is continuous, the integration over the index 
k is assumed in (3.14) instead of summation. 

Finally, it should be noted that the operator of convective transport can be written 
in the form of divergence if the dispersion of carriers velocities is not too large: 

S = J j / a r  

(3.15) 
j = ( l / A f )  I ( r ’ - r ) { K ( r ,  I; r’, t - A f ) n ( r ’ ,  t - A f ,  1,) 

- K ( r ‘ ,  f - A f ;  r, t ) n ( r ,  f, f , ) }  dr’ 

The flux j can be simplified if the correlation function (3.4) is local, compared to the 
distribution of carriers: ( A r / n ) \ a n / J r l  K 1, where Ar is the characteristic spatial width 
of the correlation function, assuming that it  decreases rapidly if I*’- rI >>Ar. Under 
these conditions the flux j acquires the simpler form: 

j ,  = Vhn - D,,an/ar ,  

V = ( l / A t )  \ ( r - r ’ ) K ( r ’ ,  t - A i ;  r, t ) d r ’  (3.16) 
J 

D;,=(OS/At) ( r - r ‘ ) , ( r - r ’ ) h K ( r ’ , t - A i ;  r, t ) d r ’  I 
where V is the average directed velocity of elements of the background and DjX are 
the components of the diffusion tensor. General results obtained are further analysed 
below. 

4. The nonlinear waves 

Let us start with the assumption that the average effectiveness of the contact transfer 
given in (3.8) is constant, i.e. 

P(r,  t, f - t , )=constant=P, , .  (4.1) 

Under this condition the integral of contact transfer (3.12) acquires a simple form: 

E (  r, I) = P,)( N,, - N )  n ( r ,  1, f , )  d!, = Pd Nu - N )  N. (4.2) J ,I 
In  this case the differential density n plays no role because the contact transfer 

does not depend on the moment 1, when the carrier was activated, i.e. system has no 
memory. Therefore we can pass to the total density of carriers in the ECT by integrating 
over f , .  Assuming, in  addition, that the function of spontaneous losses is constant 
R = T i ’ ,  where T,, is the lifetime of a carrier, we obtain using equations (3.2), (3.13) 
and (4.2) the following result: 

a N / a f  = S( N ) +  Pi,( N - N d N -  NI To. (4.3) 
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Let us discuss the characteristic solutions of the transport equation (4.3). For the 
sake of simplicity, the operator of transport S will be taken in the diffusion form (3.16) 
with V = 0. It is convenient to introduce the dimensionless variables as follows: 

n = N/ [No( l  - T-')]  

v u = P o N o  r = roV<). 
T = tV0( 1 - r-') 

In the one-dimensional case it can be found that 

J n / J T = d i n / J e + n ( l  - n) 

(= x / [ D / ( u " ( l -  r-1))]05. 

(4.4) 

(4.5) 

From (4.5) it can be seen that the system is bistable; it possesses two uniform steady 
states: we call them the ground state n =0 ,  and the excited state n = 1. In the ground 
state there are no carriers at all. The concentration of carriers in the excited state, 
existing under condition i> 1, is significant however. The transition to the excited 
state out of the ground state is described by the following equation (for the uniform 
condition n o ( x )  =constant = E ) :  

d n / d i =  n ( 1 - n )  n(0) = E.  (4.6) 
The solution of the above equation is: 

n = & / [ E  + ( 1 -  E )  exp(-~) ] .  (4.7) 

It can be easily shown now, that the ground state under the condition T >  1 ,  i.e. 

u o > l / T o  (4.8) 

is unstable. It means that the appearance of a small amount of carriers E leads to the 
exponentii! increzse oftheir .umber in time x!i! the sys!em reiches 2" excited unifnrm 
state n = 1. This state is stable under condition (4.8). 

4.1. The structure of the moving front 

A steady spatial front for the transition between the ground and the excited state does 
not exist. Nevertheless, a front moving with a constant velocity V is possiblei which 
is similar to the effect of shock waves in ordinary gas dynamics [12]. Let us discuss 
the structure of this front. Assuming in (4.5) that, 

n = n ( z )  z = ( -  VT n ( z  + -m)+ 1 n(z+ +a) + 0 (4.9) 

we can then obtain 

d 'n /dz*=-Vdn/dz-n( I -n)  (4.10) 

or, equivalently, 

dp,/dn = - V - n ( l - n ) / p ,  p,  = dn/dz. (4.11) 

The boundary conditions for (4.11) can be found from (4.9) as 

y ,  ,n I "  . . n ~ n r  Y....L. (4.!?) ,n .,..rlpr ., -0 ,,, , " ",AY... I ,  

Values n = 0 and n = 1 create singularities. Expanding p,  in the vicinity of singularities 
p,=-k , ,n+ . . .  ; p , = k , ( n - 1 ) +  , . _ ,  weobta in theva lueso fk , ,andk ,g ivenby:  

k,,= V / 2 + ( V 2 / 4 - l ) " '  k ,  = - V/2 + ( V2/4 + I)'''. (4.13) 
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It follows from this expression that the physically meaningful solution exists under 
the condition: 

v>  v,=2. 

Expanding p ,  in power series of 1/  V’ we obtain 

p ,  = - (n( l  -n ) /V) [1+(1 -2n) /V’+2(1 -5n+5n’ ) /  v4 

+ ( 5  -46n + 108n2-72n’)/ V 6 + .  . .]. 

(4.14) 

(4.15) 

The above solution satisfies the boundary condition (4.12). It can be obtained using 
(4.9), (4.10) and (4.15) that for V+CC equation (4.9) acquires the following form: 

n = (1 +exp(z/ V ) ) - ’  p ,  = - n ( l - n ) / V  (4.16) 

Figure 1 demonstrates the dependence of p ,  on n for the different values of V In 
accordance with condition (4.14), the solution of (4.10) satisfying the boundary condi- 
tions (4.12) exists only for V >  2. The structure of the moving front is always close to 
that determined by (4.16). The width of the front increases directly proportional to V.  
In the original variables the characteristic width and velocity of the front are given by: 

(4.17) 
L = V[ D / (  PONO( 1 - l /  T))] ’”  

U = (V/2)V, U,= 2[DNoPo(l - 1/ T)]’I2 ,  

Il 
0 0 2 0 . L  0 6 0.8 1.0 

-0.1 

-0.2 
,e 

-0.3 

-0 1. 

Figure 1. Parameter pI =dn/dr as a function of  dimensionless concentration o f  carriers 
n. The different curves have different YBIUCS of dimensionless velocity V of the transition 
front between the ground and the excited states. 

4.2. The evolution of the local inirial disturbance 

It was shown above that the ground state, in  which carriers are absent, n = 0, is unstable 
for J+,> To. We would like now to discuss the time evolution of a small disturbance 
of this state localized in the vicinity of a certain point (= 0 at the moment r = 0, i.e. 

n , ( t ,  0) = n , d O  1 n d 5 )  d 5 =  NI Nu<< I .  (4.18) 

The time evolution of n ,  is described by the linearized form of (4.5): 

an , /a r=a’n , /ac’+  n , .  (4.19) 
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The solution of this equation satisfying the initial condition (4.18) is given by: 
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n ,  = N , , / 2 6  exp{-C2/4r+ r } .  (4.20) 

Using this expression we can find that the number of carriers rapidly increases in time 
in the region < 2&. The linear approximation fails under these circumstances. 
Actually, the value of n ,  tends to 1 in the region described by the above inequality 
under the condition: 

T >  ~ , = I n [ 2 N ; ' m ] .  (4.21) 

In this case the nonlinear term determining the excited steady state becomes essential. 
Linearizing the equation (4.5) in the vicinity of the excited state, we also obtain 

a n 2 / a T = a 2 n 2 / a t 2 -  n2 n2 = 1 - n. (4.22) 

The solution of this equation is given by: 

n z =  N J 2 6  exp{C2/4~-r} (4.23) 

In view of this, the approximate solution of (4.5) satisfying the initial condition (4.18) 
has the form 

for n < 0.5 
for n > 0.5. 

(4.24) 

The value of N2 can be found taking into account the continuity of solution n under 
the r = rc which is determined by the expression (4.21) 

N 2 =  N,,exp(2~,)=47iN;'ln(N;'). (4.25) 

Figure 2 illustrates the results given by (4.24) and (4.25). It can be seen, that the region 
151 <&occupied by excited state n = 1 expands rapidly in time. We find that, approxi- 
mately, in this region 

f r= 2r[l  - I n ( 6 / N , ) / 2 ~ ] .  (4.26) 

Whence, the front of the region occupied by carriers moves with the velocity close to 
critical U, (see (4.17)). It should be underlined that a strictly steady front does not 
exist. The structure as well as the velocity of the front varies slowly in time. 

= [ NOl2J- T T  exp{-C2/4r+ r }  

1 - N2/2& exp{C2/4r - T )  

5 
Figure 2. The dependence of the concentrillion of the carriers n on coordinate 5 for the 
different vducs of time 7. 
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4.3. The wave motions 

Consider now the transport including the carriers N as well as the elements of 
background N ,  = N u -  N. In this case (3.14), (3.16) and  (4.5) have the form: 

a n / a t =  -Vdn/dx+ Da2n/ax2+ u , n n , - n / T ,  

an,/at  = - V,an,/ax + Da2n,/ax’- u,nn, + n, /  T,, 

n = N / N , ,  n,= N , / N , .  

(4.27) 

In contrast to (4.5), the average transport velocities V and  V, are taken into consider- 
ation. The system of equations (4.27) possesses two steady states, as discussed before. 

n = O  n,=O n O = l / k ,  n, ,  = 1 - 1,’ T,,u,, = 1 - n,, . (4.28) 

Taking into account that in the steady state n ,  = 1 - n, we find that 

T, = To(uuTu-l)-’. (4.29) 

Let us discuss weak disturbances of the excited steady state. Representing the disturb- 
ances in the Fourier form 

n = no+ n‘ exp(-iwt + ikx)  

n ,  = (1 -ne )  + n{  exp(-iwt + ikx)  

Let us substitute these expressions into (4.27) we can obtain tha t  

- ion‘=-iVkn‘-Dk2n’+ v,,ncjn; 

-iwn; =-iV,kn; -Dk2n ;  - uo(l -n,,)n’ 

which gives us the following dispersion relations: 

(4.30) 

w, ,>=  k ( V +  V,)/2+{kL(V- V,)’/4+u6n,(l-n”]‘’.’-iDk’.  (4.32) 

From (4.32) it can he seen that two wavemodes can propagate in the system. The 
dispersion relation for each of them depends on the difference of transport velocities 
of carriers and elements of background. As in ordinary hydrodynamics [ 121, the wave 
fading is determined by diffusion. 

It should be noticed that the dispersion relations will become degenerate if the 
variation in the number of elements of the background is caused only by the transition 
of carriers due to their spontaneous losses. I n  this case the last term in the second of 
equations (4.27) has the form of n / T , ,  and the dispersion relations will change to 

w ,  = kV-ik’D w 2 =  kV, -i(n,,u,+k’D). (4.33) 

5. Instability of the ground state. Self-excitation of oscillations 

In the previous section, the time variation of the efficiency of contact transfer has been 
neglected. This approximation allows the use of the simplified equation (4.3) describing 
the total density of carriers. Let us discuss a more general case when only the dependence 
P on time is sufficient. We start by investigating the stability of the ground state n = 0. 
For this purpose, the linearized equations (3.111, (3.12) and the transport operator in 
the diffusion form (3.16) are going to he used. The linearization means that the function 
of spontaneous losses depends only on time, and the diffusion coefficient is taken to 
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he constant. Also the average directed velocity of elements of the background is taken 
to he equal to zero for the sake of simplicity. In terms of Fourier components over I 

we obtain 

A V Gurevich and G M Milikh 

where U ( T )  is the linearized frequency of the contact transfer, R(T) is the function of 
spontaneous losses which is determined by the experimental conditions. The solution 
of (5.1) is given by: 

nk(f, f , ) =  f i k ( f , )  exp I - D k 2 ( f - f ~ ) - ~ o ' ~ ' '  R ( T )  dr}. (5.3) 

The asymptotic solution of (5 .2)  can be determined by substituting expression (5.3) 
into (5.2). It is given by 

(5.4) f i k  ( 6 )  = r?,(O) exp( pil)  

1 = U * ( P )  

where p is the largest root of the equation: 

In fact, within the approximations made, ( 5 . 5 )  takes the form 

1 = U*( p )  p* = p i  l / T o i  Dk2 (5.6) 

where u ( p * )  is the Laplace transform of U ( . ) .  Equation (5.6) was obtained under 
condition R(  T )  = constant = 1/ To. 

5.1. Examples 

Under the constant values of U = U ,  and R = 1/ Tu the value U * (  p )  is U * (  p) = vo/p*, 
and using (5.6) we obtain 

p = U" - 1/ To- Dk'. (5.7) 

In this case the instability of the ground state appears if vu> l/T,) for the spatially 
uniform distribution ( k + O )  which is in agreement with condition (4.8). 

If the frequency U (  T )  can he represented as a finite pulse 

the equation (5.6) (under k - 0 )  acquires the form 

4exp(-p*T,J -exp(-p*T,)) = P *  

p* = p t  I / T , , i  Dk'. 

The condition: 

v d ~ ~ - d >  1 

( 5 . 8 )  

( 5 . 9 )  
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determines the physical root of equation (5.8). The instability will occur if p > O  in 
addition to the condition (5.9). This means that the root of the equation (5.8) should 
be larger than l/ To+ Dk2. This condition is always satisfied when the values of To are 
large enough and k tends to zero. 

Another case of significant interest is when the function ~ ( 7 )  has a sharp maximum 
close to some prescribed value of 7,. In this case we obtain 

and (5.6) acquires a simple solution 

p =  -l/To- Dk2+(1/T,)ln K O .  (5.11) 

From this equation it can be seen, that the instability rises if K,>exp(~,/T,). The 
inequality K O >  1 is the necessary condition for instability, which is in agreement with 
the condition (5.9). 

The presence of instability in the ground state does not guarantee that the steady 
excited state exists. It shows only that the transition to the oscillating regime is possible. 
The equations (5.1) and (5.2) are related to models of spread of a disease which does 
not induce permanent immunity [13]. The existence of periodic solutions of this 
equation was established in [ 141. Oscillations always arise i f the ground state is unstable 
and the integral of the frequency of contact transport over time is bounded if the 
integral of the function of spontaneous losses over time tends to infinity. The function 
R ( T )  has been defined above; 

For instance, let us discuss the situation when the function Y ( T )  described by (5.10), 
has a sharp peak. The nonlinear equations for the density of carriers then can be 
obtained using (3.2), (5.1) and (5.2) under assumption that the spontaneous losses are 
constant and that the transport is diffusional: 

n x ( f ) = K o ( l - N , ( f ) ) n k ( t - ~ m ) e x p ( - p , l r , )  

po  = 11 To+ Dk' (5.13) 

N,(t)=exp(-p,f) n , ( t , )exp(pd,)dt , .  J "' 
The stability of the ground state for this case has been previously investigated (see 
(5.11)). The excited steady state N=constant does not exist, as shown in (5.13). This 
means that the system undergoes a transition to an unstable regime under the conditions 
of instability discussed after (5.11). Figure 3 shows the oscillating solutions of (5.13) 
(when k +  0). found by computer simulations. 

I t  should be noted that the development of a weak initial disturbance given by 
(4.18) occurs in the form of the nonlinear wave diverging on both sides with velocity 
v=2(Dp)'". Where p is the increment of instability of the ground state defined by 
the expression (5.1 1). The motion of fronts is accompanied now by the wave excitation 
with the wavelength A UT. Hence, the instability of the ground state (5.5) in the 
discussed system leads to the self-excitation of waves and oscillations under the 
conditions (5.12). 
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Figure 3. The time oscillations of the density of carriers n with the latent period J , , , ;  

x = i / v , , > .  It was assumed that T,, = T,,, = 2, and K,, = e'. The initial concentration ofcarriers 
was taken 10-2exp((ln Kcl-~,,, / lJxl, in accordance with (5 .11 ) .  

6. The strongly non-uniform system 

Consider now the case of the strongly non-uniform medium. Let us assume that the 
elements of the system are localized close to specified points r, 

N d r )  = 1 n k d r - r k ) .  (6.1) 
h 

--:-ao -In.. tho ,.f "_.. -.--e :.. +ha +-o..o-nd n r n r ~ r ~  1f+h- dnnril., rrFnlnment. 
1 , ,CJC y""1LJ yL'J L 1 1 L  l " l C  "1 .,""ICLD 111 ,ilk L L L L L 1 " y " 1 ,  y L " " b ' > .  11 L I . C  YL"".LJ ". C l r l l l L l l L a  

is very high inside the sources then the contact transport goes fast inside the source 
which results in the generation of a large number of carriers. However, propagation 
proceeds slowly between the sources. In  this case the contact transport occurs in a 
similar manner to the flux of the disturbance between the sources breaking out one 
after another. This situation is close to that which is discussed in percolation theory 
[&!Oj. !n addition the gi-en apprnach considers on!y equa!ions for mezn density 2nd 
ignores fluctuations, which become important near threshold, as it has been shown in 
[&lo]. 

Assuming that condition (4.1) is fulfilled, the equation of contact transport (4.3) 
can be simplified. Taking into account the discreet character of sources, the equation 
(4.3) can be rewritten in the integral form 

N ( r , f ) = p , , I  d r ' l c :  G ( r - r ' , f - f ' ) N ( r ' , f ' ) ( N , , - N ( r ' , r ' ) ) d r '  (6.2) 

where G ( p ,  1) is the Green function of the corresponding linear problem (without the 
integral of contact transfer). For example, the Green function for the diffusion transport 
on the planar surface has the same behaviour as in directed percolation [15]. 

(6.3) 

The contact transport occurs infinitely fast, like an  outbreak, inside any source because, 
according to (6.1), the density of elements is infinitely large inside it. Assuming that 
the carriers appear at the moment fA in the source localized at the point rk ,  the solution 

G(p, I) = (47rDf1-l exp(-p'/4Df - firu). 
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of (6.2), (6.3) can he expressed as 

N ( r ,  f )  =(4?rD)-' x J ( f  - t , ) / ( t  - I k )  exp{-(r- r ~ ) ~ / ( 4 D ( t - f , ) ) - ( t - t h ) /  J,] 

where 

h 

if t - t h c : O  

if f - t , > O  
J( t - th ) = 

Here nko is the total number of elements in a given source. They become carriers at 
the moment t = t k .  

The ignition time of each outbreak can be also defined. We had assumed, that in  
the initial moment the localized disturbance (4.18) is given. The density of carriers 
immediately becomes different from zero on the whole surface due to the diffusion 
transport. If we assume that the density of elements is infinite in any source, as in 
(6.1), then all sources break out at once at the time t = 0. However, if a finite density 
of carriers is required to excite a source N(rk, f )  = E,, the condition of excitation 
acquires the form: 

N ( r , ,  I)=(4.rrD)" x J , ( f  - t n ) / ( f  - 1 " )  e x p { - p ~ , / ( 4 0 ( 1 - 1 , ) ) - ( 1 - l , ) / T , } > ~ ~  (6.6) 

where p n k = I r - r n 1  and k # n .  
Condition (6.6) determines the ignition time of the source of number k. The value 

of N ( r , )  decreases exponentially when pPzr increases. It shows, that the main role in 
excitation is played by the source's closest neighbours. The sharp dependence on time 
of the expression in the exponent in (6.6) can be used to simplify the results. The 
extremum value of time is given by 

f, = t , ,+p, , (J , , /4D)' /* .  (6.7) 

We also can determine the optimal input into the point rh by the source located at the 
point r, : 

( A N ) , ,  = ~ , ~ , / [ ~ . ~ ~ P , ~ ( D J O ) ' / * I  exp{-p,i/(DJJ'/*}. (6.8) 

k 

The result (6.8) suggests, that if on average 

PL"DTo (6.9) 

the opportunity of the source r, to outbreak depends actually upon the closest source 
rh- ,  . Sources will outbreak one after the other and the ignition time of the source r, is: 

f x  = f x - i  +0.5 J,{ln[n,-,,"/(2~DT,,El,l)1 

+ [In2(n,-,,/(2.rrDT,,&,,,)) - P?.-,,JDT,J"'} (6.10) 

where t x - ,  is the ignition time of the k -  1 source, and nh-,,,> is the total number of its 
elements, It should be emphasized that the outbreak takes place only i f  (AN)h.,,k > .ckl,, 
i.e. if the expression under the square root in (6.10) is positive. In the opposite case 
the outbreak of the kth source will not occur. Under this condition the contact transport 
is similar to the 'Rowing' of disturbances through the localization points rL - ,  . 

Hence, under condition (6.9) the process of propagation of initial disturbance in 
the system is non-trivial: it strongly depends on the spatial distribution of localization 
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points. If the condition opposite to (6.9) is achieved, the system is close enough to the 
uniform. 

A V Gureuich and G M Milikh 

1. Discussion 

Generalized equations have been obtained describing contact transport in a system of 
free moving elements interacting in a prescribed way. The contact parameters, the 
internal properties and the distribution of elements can be some prescribed functions 
of time. Possible applications of the above transport processes in gas-like systems are 
associated with the mathematical theory of contagious diseases. The systems described 
by these equations include the carriers of a certain property and the background 
elements. Such systems turn out to be bistable; possessing two steady states: ground 
and excited. The structure of the moving front formed by the transition between ground 
and excited states has been discussed. These results can be used to evaluate the velocity 
of propagation of an epidemic disease. 

It has been shown, that for a constant value of an average effectiveness of contact 
transfer, i.e. in the system without memory, two different modes can propagate. Their 
dispersion relations depend on the transport velocities of both carriers and on the 
background elements. 

The stability of the ground state has been investigated using the time-dependent 
value of the average effectiveness of contact transfer. The instability of the ground 
state leads to self-excitation of waves and oscillations which is similar to time oscilla- 
tions known in the epidemic processes [l]. 

Contact transport in highly non-uniform media consisting of a number of point 
sources has been studied as well. The ignition time of a source has been determined. 
Also a criterion has been obtained which gives conditions under which the medium 
becomes non-uniform. The contact transport in highly non-uniform media can be 
associated with an outbreak of contagious disease in.the region of large concentration 
of susceptibles. 
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