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Abstract. A new and improved model of red sprites is presented. Emphasis is placed 
on accounting for the puzzling observation of the spatial structure in the exnissions. The 
model relies on the electromagnetic pulse (EMP) fields created by a horizontal lightning 
discharge and includes the observed fractal structure of such discharges in the computation 
of the EMP power density. It, is shown that the model can account for the observed spatial 
structure of the red sprites while reducing the typical charge required to approximately 
100 C. 

1. Introduction 

High-altitude optical flashes were detected more 
than 100 years ago [Kerr, 1994]. Interest in the sub- 
ject was renewed recently following the observations 
of such flashes by the University of Minnesota group 
[Franz ct al., 1990]. Since then, observations of the 
optical emissions a.t altitudes between 50 and 90 km 
associated with thunderstorms have been the focus 

of many ground and aircraft campaigns [Boeck et al., 
1992; Vaughan ½t al., 1992; ['l/•nckler ½t al., 1993; 
Sentman et al., 1995; Lyons, 1994]. Sentman and 
Wescott [1993] and Winckler et al. [1996] described 
the phenomenon, called "red sprites", as a luminous 
colulnn that stretches between 50 and 90 kin, with 
peak lmninosity in the vicinity of 70-80 km. The 
flashes have an average lifetime of a few milliseconds 
and an optical intensity of about 100 kR. Red sprites 
are associated with the presence of massive thunder- 
storm clouds, although the luminous columns do not 
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seem to touch the cloud tops. Among the most puz- 
zling aspects of the observations is the presence of 
spatial structure in the elnissions reported by Winck- 
let et al. [1996]. Vertical striations with horizon- 
tal size of 1 km or smaller, often limited by the in- 
strumental resolution, are apparent in the red sprite 
elnissions. 

The first published theoretical model of red sprites 
[Milikh ½t al., 1995] associated their generation with 
transient electric fields induced by large intracloud 
lightning discharges. The intracloud discharge was 
lnodeled as a horizontal electric dipole at an altitude 
of 10 kin, and the field calculation included quasi- 
static, intermediate, and far-field components. Mi- 
likh et al. [1995] demonstrated that energization of 
the ionospheric electrons by the transient fields could 
account for several of the observed features. Two 

subsequent papers reached the same conclusions us- 
ing similar methodology as above but emphasizing 
different sources for the lightning-generated electric 
fields. The first [Pasko et al., 1995] modeled the elec- 
tric fields energizing the electrons as due to a point 
charge Q (monopole) at an altitude of 10 km. The 
analysis emphasized the i•nportance of dielectric re- 
laxation of the field. The second [Rowland et al., 
1995] assumed that the fields were due to the far 
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field of a vertical electric dipole generated by cloud- 
to-ground discharges. All of the above models, while 
successtiff in explaining some observed characteris- 
tics of red sprites, such as the color and the gener- 
ation altitude of the emissions, suffer froin two im- 
port. ant drawbacks. First,, dipole or monopole distri- 
butions generate electric fields smoothly distributed 
at, ionospheric heights, thereby failing to account for 
the persistent spatial structure of the red sprites. 
Second, the threshold charge and dipole moment re- 
quirements for all three models have been criticized 
as unrealistically large (based on the lightning pa- 
ralneters cited by Uma• [1987]). 

The objective of the present paper is to extend 
the results of Milikh ½t al. [199,5] and it Valdivia et 
al. [1997] by incorporating in the calculation of the 
transient field the internal fine structure of the intra- 

cloud discharge. It will be shown that incorporating 
in the calculation of the lightning-induced fields the 
dendritic fine structure of the lightning channel, as 
described by Williams [1988] and by Lyons [1994] 
(who termed it spider lightning), results in a natu- 
ral explanation of the observed spatial structure of 
the red sprites and in a significant reduction of the 
required threshold charge. The fractal lightning dis- 
charge must be of the intracloud type to have a ra- 
diation pattern that is preferentially upward (as well 
as downward). 

Figure 1 illustrates the major elements used in our 
model. The first element is a computer model of the 
intra,cloud discharge that tries to account for its den- 
dritic fine structure. This is modeled as a horizon- 

tal fractal discharge structure that produces the spa- 
riotemporal distribution of the amplitude and phase 
of the electromagnetic field in the far zone. 

As the field propagates from the lower atmosphere, 
self-absorption becomes in•portant, requiring, as the 
next element of our model, the self-consistent com- 

putation of the propagation of the lightning-induced 
fields in the lower ionosphere. The fields interact 
with a.nd energize the ambient electrons generating 
non-Maxwellian distribution fimctions. The colli- 

sions of energetic electrons with neutral particles re- 
stilt in the observed emissions. The structuring of the 
elnissions is attributed to the highly inhomogeneous 
fields projected into the lower ionosphere, when the 
internal structure of the discharge is included in the 
model. It will be shown that the model not only ac- 
counts for the structure but also simultaneously re- 
duces the required charge for the lightning discharge 
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Figure 1. A diagram of the tasks involved in the treat- 
ment.. From the fractal struct. urc, wc compute the fields 
generated and their interaction with the medium in the 
lower ionosphere. 

driving the red sprites, which have a total optical 
emission of about 100 kR, to levels more consistent 
with observational requirements. 

In section 2 we describe a model of lightning as a 
fractal antenna, estimate its fractal dimension, and 
present a few examples of fractal discharges. In sec- 
tion 3 we consider the propagation of the lightning- 
generated fields in the lower ionosphere, including 
the effect of self-absorption, and compute the elec- 
tron distribution function in the presence of the elec- 
tric fields. In section 4 we discuss the intensity of 
the optical emissions due to lightning and the spa- 
tial structure of the red sprites generated by fractal 
discharges. This is followed in section 5 by conclu- 
sions. 

2. Lightning as a Fractal Antenna 
It is well known that lightning discharges follow a 

tortuous path [L½ Vine and Mcncghini, 1978]. It was 
shown [William, s, 1988] that intracloud discharges 
resemble the well-known Lichtenberg patterns ob- 
served in dielectric breakdown [see also Idone, 1995]. 
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These patterns have been recently identified as frac- 
tal structures of the diffusion limited aggregate (DLA) 
type with a fractal dimension D • 1.6 [Niemeycr et 
al., 1984; Sander, 1986]. 

A fractal lightning discharge radiates as a fractal 
antenna and, unlike a dipole type of antenna, gener- 
ates a spatially nonuniform radiation pattern, with 
regions of high field intensity and regions of low field 
intensity. This is equivalent to a two-dimensional 
phased array having an effective gain factor. Such 
a fractal lightning discharge can be modeled as a 
set, of nonuniform distributed sinall current line el- 

ements [Nie'meycr et al., 1984; k•'cchi et al., 1994] 
{ri,, Li,, In, si,)[n: 0 ..... N}, where r. and Un are 
the position and orient, ation of the nth line element, 
.s'. is the distance traveled by the discharge, and I• 
is the strength of the current, at, the nth line element. 
For future reference, the discharge is placed horizon- 
tally at, a height of 5 kin, and an image discharge is 
placed 5 kin below the conductive ground. 

to the spatial distribution of the individual elements 
over the fractal. In fact., for an oscillating current, of 
the forin e i•t the phases vary as q• ,,• k. x - k.r=, 
where k = •/c and x is the position of the observa- 
tion point,. 

In the sense of statistical optics, we can consider 
the ensemble average of equation (1), using an er- 
godic principle, over the spatial distribution P(•, 
02,03,..., A1, A2, A3 .... ) of the fractal elements [Good- 
man, 198,5]. For simplicity we assume that. the dis- 
tributions for each of the elements are independent 
and the same; hence 

•r 

From this equat. ion the antenna gain G yields 

[A 2 / N- 1 2 

2.1. Why Is a Fractal Lightning Discharge so 
relevant? 

A fractal lightning discharge can be considered as a 
two-dilnel•sional phased array antenna, that will nat- 
urally exhibit a spatially dependent radiation pat- 
tern with an effective gain factor. Such a gain factor 
is extremely ilnportant, for it will reduce the light- 
ning energetics (see below), coinpared with the dipole 
model, required to produced the optical emissions in 
the ionosphere. 

In order to stndy how this gain factor comes about, 
we consider a. fractal antenna as a nontlniform dis- 

tribution of radiating elements as described above. 
For an oscillating current of the form e i•t, each of 
the elements contributes to the total radiated power 
density at. a given point. with a vectorial amplitude 
and phase [Alla.i• a•d Cloitre, 1987; Jaggard, 1990; 
Ti;er•e'r on [4'erne'r, 1995], i.e., 

N N 

r. E* ,---, (Z An eid'")' (E AxneiCm )* 
n--1 m--1 

: E(An' Ai•)e i(½"-½m) (1) 

where E* denotes the colnplex conjugate. The vec- 
tor amplitudes A. represent, the strength and orien- 
tation of the field generated by each of the individual 
elements, while the phases 4•, are, in general, related 

This is one of the most important relationships that. 
ca, l• be used to study fractal antennae. The first, 
term represents the incoherent radiation COlnponent, 
and the second term is the coherent (interference) 
radiation component. If we further assulne that 

([AI e) -I(A)[ e- 1, we obtain that the ensemble 
average is 

. i N- I •)[ (2) 
If the distribution of the phases is random (or uni- 
forin), then < e i0 >- 0 and G - N. On the 
other hand, if there is perfect coherence, we have 
< •i½ >_ 1 and G - N •. If the distribution of the 
vector a. mpli[udes does not satisfy the above rela- 
tions, for example, if the radiators are oriented in ar- 
bit. rary directions, [hen the power density will be less 

coherent since (IAI 2) 2 • [{A}[ (true for any distri- 
bution). A similar result can be achieved by having 
a distribution of amplitudes instead of phases. 

In general, a ffa. ctal antenna will display partial co- 
herence in some direction(s), and the peak radiated 
power will lie in between these two limits and can 
show a significant, gain over a random distribution of 

phases. The coherence term N(N- 1)I<A>I 
depends on the spatial structure of the ffactal an- 
tenna. Such spatial structure is usually described by 
the fractal dimension D [Ott, 1993]. We conjecture 
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that the most relevant structural parameter deter- 
mining the radiation pattern of a fractal discharge is 
its fractal dimension, which we can estimate as fol- 
lows. If we partition the volume where the discharge 
occurs into boxes of side s, the number of boxes that 
contain at least one of the discharge elements will 
scale as N(e) ,.• e -D . It is easy to verify that a point 
corresponds to D - 0, a line corresponds to D - 1, 
and a compact surface corresponds to D = 2 . The 
box counting dimension [Ott, 1993] is then defined 
by 

D •_ In N(s) (3) 
ln(•) 

Note that if e is too small, then the elements of 

the discharge will look like one-dimensional line ele- 
ments. Similarly, if e is too large, then the discharge 
will appear as a single point. Therefore it is very 
important to compute D only in the scaling range, 
which is hopefully over a few decades in s. 

We will now apply these ideas to models of the 
lightning discharge. Figure 2 shows two different 
models of a lightning discharge. The top drawing 

Figure 2. Top drawing is a dipole or straight line 
model of the lightning discharge. Middle drawing 
represents the tortuous model between the same two 
endpoints as in the dipole model. The tortuous 
model can be described as a spatially nonuniform 
distribution of radiators, each contributing to the to- 
tal radiation field with a given phase and amplitude 
(bottom drawing). 

shows the dipole, or linear, model of the current 
channel between two points; in general, it will gen- 
erate a dipole radiation pattern. The middle draw- 
ing shows a tortuous model of the discharge between 
the same two points; this tortuous current channel 
can be considered as a two-dimensional phased ar- 
ray, as shown in the bottom drawing. Note that the 
tortuous model will have a longer path length that 
will increase N or the individual .4• in equation (2) 
with respect to the dipole model. Clearly, there will 
be positions at which the radiation pattern from the 
tortuous line elements will add constructively, while 
at other positions they will add destructively. There- 
fore we expect that a tortuous lightning channel will 
have, besides the spatial structure, a radiation pat- 
tern with spots of radiated power density larger than 
the more homogeneous dipole pattern. The fractal 
dimension will be an important parametrization for 
the fractal discharge models that will be generated 
and will play a significant role in the spatial struc- 
ture and intensity of the radiation pattern, as we will 
see later. 

2.2. Time Dependent Fields 

A current pulse, I(t- s/v), propagates with speed 
v (hence .;Y - v/c), along the length s of the horizon- 
tal fractal discharge. The discharge will be mainly 
horizontal so that. it radiates energy upward, as op- 
posed to a vertical discharge, which will radiate its 
energy mainly in the horizontal direction. The in- 
tra,cloud current pulse is taken as a series of train 
pulses that propagate along the arms of the antenna 
and have a time dependence given by 

I(t) - (e -• - e-vt)(1 + cos(wt))H(t) (4) 

with w - 2•rc•n.t and H(t) as the step function. Here 
,.r represent the number of oscillations during the 
decay timescale 1/c•. We chose c• - 10 a s -• as the 
inverse duration of the pulse and 7- 2 x 10 s s -• as 
the risetinae [see Urnart, 1987]. The initial strengths 
of the current pulse Io get divided as the discharge 
branches, but. the total charge discharged is then Q - 
Io/c•, which for Io - 100 kA gives Q • 100 C. 

2.3. Example: Tortuous Discharge Model 

A fractal tortuous path can be constructed in 
terms of a random walk between two endpoints [ Vec- 
chiet al., 1994]. We start with a, straight line of 
length L, to which the midpoint is displaced using 
a Gaussian random generator with zero average and 
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deviation •r (usually •r = 0.5L). The procedure is 
then repeated to each of the straight segments N 
t, imes. There is a clear repetition in successive halv- 
ing of the structure as we go to smaller scales, making 
it, a. broadband antenna. Figure 3a shows a typical 
tortuous fractal, where the division has been taken 
to the N = 8 level and in which the path length 5' 
has increased 5 t, imes, i.e., S •, 5L. We can estimate 
the fractal dimension by realizing that the total path 
length 5 ' should go as 

L 

where (0 is the average segment size. This equation 
('an be derived from equation (3). 

The computation of the radiated electric field is 
described in the appendix in the far-field approxima.- 
tion. Note that. this antenna will radiate every time 
there is a change in direction of the discharge. It 
is expected that it will have a peak radiated power 
density larger than that of an equivalent dipole (see 
description on antenna gain above). 

The far-field array factor R = rt f dtE 2 and the 
peak power density depend on the path length or, 
equivalently, on the number of segments of the frac- 
tal. Take the tortuous path of Figure 3a with ,! = 5 
so that the peak of the array factor is at x = 0 km 

and y = 0 km at a. height h = 60 km. Starting with 
the dipole (straight path), for each successive divi- 
sion, N = 1,2, ..., 8, we compute the array factor R 
as a function of the tortuous path length (Figure 3b). 
There is a clear increase in the array factor from the 
tortuous fractal as compared with the single dipole. 
The straight line fit agrees with the theoretical result 
(to be published elsewhere) 

R(As) As 
Ro • i q-c•At n,/ Lo 

where As is the increase in the path length due to 
the tortuosity and At is the time it takes the pulse 
to propagate along the fractal. 

Therefore, even for time dependent discharge cur- 
rents, the effect of tortuosity can definitely increase 
the radiated power density at certain locations, as 
compared with a single dipole antenna. Such a re- 
stilt. will become extremely important in our lightning 
studies, in which by going away from single dipole 
models we can increase the power radiated from a 
fractal antenna. or, in the case of lightning, a fractal 
discharge. Such gain in the radiated power density 
can be traced to the different fractal dimensions D 

as given by equation (5). 
Another important concept related to fracta.1 an- 

tenna, e is the spatial structure of the radiation field. 
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Figure 3. (a,) The tortuous discharge. (b) The array factor dependence, normalized to the 
dipole, on the path length. 
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For large "7 the array factor scales as R • exp(-a 
At/c)(2 + cos(27r n 7 aArlc)) where Ar- max,• d,• 
- max• ][ x- rl• [[, i.e., the maximum variation 
over the fractal of the distance between the ele- 

ments of the fractal r,, and the field position x (see 
the appendix). Consequently, the radiation pattern 
will have spatial structure when a nf Ar/c • 27r, 
which translate into nf • 50. A more comprehen- 
sive and natural model of fractal discharges that in- 
cludes branching and tortuosity is developed in the 
next section. 

2.4. Two-Dimensional Fractal Discharge 

Femia 6t al. [1993] found experimentally that 
a dielectric discharge pattern is approximately an 
equipotential. On the basis of this idea, we can con- 
struct a fractal discharge by adapting for our pur- 
poses the two-dimensional stochastic dielectric dis- 
charge model proposed by Niemeycr et al. [1984]. 
This model naturalIv leads to fractal structures where 

the fractal dimension can be easily parametrized by 
a parameter 

We start with a charge Q at the center of our com- 
putational box. A discharge will start propagating 
from this initial point. C•onsider a discharge pattern 
(line connecting the solid circles in Figure 4) at a 
later time t, which we assume to be an equipotential 
with value e5 - 0. The boundary condition at infinity 

! 

0 , 

Figure 4. Diagram of the discretized fractal dis- 
charge and its adjacent grid points. The solid circles 
correspond to the discharge, and the open circles cor- 
respond to the adjacent points that can be added to 
the discharge. 

(on a circle far away frons the discharge) is q• - 1, a 
choice that simplifies the computation of the electric 
field close to the discharge. The potential outside the 
discharge structure can be computed by iterating the 
discrete two-dimensional Laplace's equation 

until it, converges. The discharge pattern grows in 
single steps by the addition of an adjacent grid point 
(open circles in Figtire 4) to the discharge pattern, 
generating a new bond. We assume here that a.n 
adjacent grid point, denoted (i,j), has a probability 
proportional to the •1 power of the local electric field 
to become part of the pattern. Since the electric 
field for a point (i,j) adjacent to the discharge (where 
½ - 0) is given by Ei,j • &i,j, the probability of 
adding such a point t,o the discharge can be expressed 
as 

where the normalization suns is over all the points 
adjacent to the discharge. Therefore we apply the 
Monte (?arlo method to add one of the adjacent 
points t,o the discharge, i.e., throw the dice and 
choose one of the adjacent, points. The new grid 
point,, being part, of the discharge structure, will 
have the same potential a,s the discharge pattern, i.e., 
o - 0. Therefore we lnust resolve Laplace's equation 
for the potential every time we add a new bond. 

The structure generated for •/- 1 corresponds to 
a Lichtenberg pattern. The dimension of this frac- 
tal structure is D • 1.5, as follows froin Figure 
5, which reveals the relation between zl and D (de- 
fined above and COlnputed with the standard ineth- 
ods [Ott, 

We expect that when •/ - 0 the discharge will 
have the same probability of propagating in any di- 
rection' the discharge will be a compact structure 
with a, dimension D - 2. On the other extreme, for 
•? --> ,:x: the discharge will become one dimensional, 
and hence D - 1. Therefore this model, and also 

the dimension of the discharge, is parametrized by q 
(Figure 6). 

In order t,o compute the radiated fields, we must 
describe the current, along each of the segments of 
the ffactal discharge. We start with a charge Q at 
the center of the discharge. The current, is then dis- 
charged along each of the dendritic arms. At each 
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Figure 5. Fractal discharge generated with the 
stochastic model for r/ = 1. The gray shading cor- 
responds to the electric potential that generated the 
discharge. 

branching point we choose to ensure conservation of 
current, but we expect, a. high current to propagate 
longer than a small current before being stopped. 
Hence a.t each branching point, a larger fraction of the 
current will propagate along the longest arm. Sup- 
pose that a. current Io arrives a.t, a. given branching 
point, and if Li is the longest. distance along the ith 

1.8 :'• 
1.6 '•. 
1.4 •'-. 

.. 

1.0 , , ' ......... , .............. • 

0 2 4 6 8 10 

Figure 6. The dimension of the stochastic discharge 
model as a fimction of r/ with the estimated error 
bars. 

branching a. rm, we assume that the current on the 
ith a. rm will be proportional to L•. Therefore we can 
satisfy charge (or current.) conservation if the current 
along the ith arm, which branches at, the branching 
point,, is 

.. (6) 

The calculation of the electric field in the ionosphere 
fi'om the fractal current structure is described in 

the appendix for the far field of the small line ele- 
ments. It turns out that the radiated power den- 
sity ,_•(W/m •") = ceoE •" • I•,32 f(D)g(O, D, fi), where 
#(0, D,/•) describes the angular distribution of the 
radiated pa. ttern and f('D) describes the dimension 
dependence. As we increase •, the angular field dis- 
tribution from a single horizontal line element be- 
comes narrower and goes from a dipole radiation p•!,- 
tern that peaks in the direction perpendicular to L,. 
(contributes to the field in ionosphere) to a radiation 
pattern that peaks preferentially in the same direc- 
tion a.s L,. (does not contribute to the field in the 
ionosphere). Therefore there is also a.n interplay be- 
tween the electric field pattern #(0) generated from 
the fractal discharge, and hence between its dimen- 
sion and speed of propagation ,3. 

3. Electromagnetic Pulse Absorption 
and Electron Energization 

Once we have the fra. ctal discharge structure, we 
must consider the propagation of the lightning fields 
indited in the lower ionosphere. The fields ener- 
gize the electrons, generating highly non-Maxwellian 
electron distribution functions which increase the 

nu•nber of electron-neutral inelastic collisions, re- 

sponsible for the emissions, and inducing field self- 
absorption. The electron energization is computed 
with the help of a Fokker-Planck code [Tsat•g ½t al., 
1991]. 

3.1. Self-Absorption 

As the lightning-induced fields propagate in the 
lower ionosphere, the field changes t, he properties of 
the medium by heating the electrons while experienc- 
ing absorption. The solution to Ma.xwell's equations 
for the propagation of the electric field is a nonlinear 
wave equation 

4•'0 1 02 

V-"E-V(V.E) e3(ag) ot(m)- 0, (7) 
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where the medium is incorporated in the conductiv- 
ity • and in the dielectric •' tensors [Gurevich, 1978]. 
For the heights and frequencies of interest, • and • 
reach a steady state much faster than the timescale 
of the field variation, i.e., 1/w. The solution in the 
ray approximation is therefore 

' _ - csc(x) f: •(z E2)dz z(o t- E'"(?s,t) "" s2 c 
(8) 

where sin(x) = z/v/x "• + yU + z • is the elevation an- 
gle of the point r = •s = {x,y,z}, H(t) is the 

, ,E 2 2 . step function n(z ) - •oe%/c(g• + •,;)is the 
• _ 4zrn•e •/ absorption coefficient of the wave, w e m 

is the plasma frequency, and f• = eB/mc is the 
electron gyrofrequency, The nonlinearity is incor- 
porated self-consistently through •/e = •,•(z, I•l), the 
electron-neutral collision frequency, due to the non- 
Maxwellian nature of the electron distribution func- 

tion that the fields generate. 

3.2. Electron Distribution and the 

Fokker-Planck Approach 

The electron distribution function in the presence 
of an electric field is strongly non-Maxwellian, re- 
quiring a. kinetic treatment. The kinetic treat. ment 
will provide •,• = •'e(z, I•l) •,nd the excitation rates 
of the different electronic levels. We use an existing 
Fokker-Planck code, which has been developed for 
the description of ionospheric R.F breakdown [Tsang 
½t al., 1991; Papadopoulos et al., 1993]. For given val- 
ues of E and % (the ambient collisional frequency), 
the electron distribution function f(v) is found by 
solving numerically the Fokker-Planck equation 

Of 1 0 Of 
at 3mv2 Ov(V•"•,(v)F(E,•,(v))•v ) - œ(f), (9) 

where 

is the quiver energy or the kinetic electron energy 
in an oscillating electric field, u(v) is the electron- 
neutral effective collisional frequency, œ is the oper- 
ator which describes the effect of the inelastic col- 

lisions [Tsang et al., 1991], and 0o is the angle be- 
tween the electric and magnetic fields. We have 
assumed that the frequency of the electromagnetic 
fields satisfies w << •, %. We have also assumed 
that (•/•,)= cos • 0o < 1, which is the less energet- 

ically beneficial case. It is satisfied at any height of 
the lower ionosphere in the equatorial region or at 
the height below 80 km at lniddle latitude. Notice 
that, for (•8/y)u cos • 0o < 1, the electrons can gain 
lnore energy from the electric field, increasing the 
absorption and reducing the field amplitude at the 
higher altitudes. 

The averaged quiver energy •'(E, %), which de- 
pends nonlinea.rly on the steady state averaged col- 
lisiona.1 frequency %, is the critical parameter that 
controls the behavior of the distribution function 

f(v) under an electric field E at a given height. For 
values of • < 0.02 eV, most, of the energy absorbed by 
the electrons excites the low-lying vibrational levels 
of nitrogen, and emissions in the visible range cannot 
be excited. For 0.02 eV< F < 0.1, eV the electron 
energy results in excitation of optical emissions and 
molecular dissociation. For F > 0.1 eV, ionization is 
initiated. For simplicity we are going to consider the 
case in which the electric field is below the ionization 

threshold, i.e., F < 0.1 eV; otherwise a self-consistent 
equation for the electron density in space must. be 
included in the analysis. 

4. Intensity and Structure of Sprites 
Given the spatioten•poral field profile including 

self-absorption, we consider the optical emissions, or 
red sprites, from N2. We discuss only the emissions 
of the N,•(1P) band caused by the excitation of the 
Bal-Iv electronic level of molecular nitrogen by elec- 
tron impact. This band dominates in the spectrum 
of red sprites [Mende et al., 199,5]. Here we compute 

• of the N_,(BaII•) electronic the excitation rate %•, 
level, which has an excitation energy of 7.35 eV and 
a lifetime of 8 p.sec, by using the Fokker-Planck code 
for a given field strength. The excitation rate per 
electron is then given by 

v 

where •r•. is the excitation cross section and .Nk•2 
is the number density of N2 [Milikh et al., 1997]. 
The excitations are then followed by optical emis- 
sions, and the number of photons emitted per sec- 
ond per cubic centimeter is given by •:•.n• for an 
electron density n,•. In order to compare with obser- 
vations, it is convenient to average in time the num- 
ber of photons over the duration of the discharge 
T (approximately milliseconds), i.e., < •,fl•,,• >= 
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.• B dt/T. The intensity of the radiative tran- lie. r l•, e 

sition in Rayleighs is given by 

10-6 / B ( vc,•n• )dl (12) I=4•' ' 

where the integral is carried along the visual path of 
the detector (column integrated). 

In order to apply our model, we must specify the 
current amplitude Io, along the discharge, the ve- 
locity of propagation of the discharge /3 = v/c and 
the electron density profile in the lower ionosphere. 
From here on we shall assume a midlatitude night- 
time electron density profile [Gurcvich, 1978]. 

The fractal model is especially suitable for under- 
standing the dependence on the dimension of the 
discharge [Valdivia et al., 1997], since D(q) can be 
easily parametrized, as is plotted in Figure 6. We 
proceed next, to determine t, he spatial structure of 
the optical emissions as a function of the dimen- 

sion D. We consider the four fractal discharges q = 
l, 2, 3, and cx:• shown in Figure 7 with dimensions 
D •_ 1.5, 1.35, 1.25, and 1.0, respectively, where the 
thickness of the line corresponds to the strength of 
the current. 

In general, the electric field and emission pattern 
induced by the fractal discharges in the ionosphere 
are three-dimensional (3-D), but for the purposes of 
illustration we take a two-dimensional cross section 

(e.g., the line y = l0 kin from the center of the dis- 
charge) of this 3-D profile in the ionosphere. The 
emission patterns along the cross section y = 10 kin, 
averaged over the duration of the discharge using 
Equation (12), are shown in Figure 8 for the frac- 
tal discharge corresponding to q = 3. The velocity of 
the discharge was taken as • = 0.025 and the amount 
of current was taken as Io = 200 kA. The emission 
rate, i.e., number of photons per cubic centimeter 
per second, is computed in decibels with respect to 
the averaged emission rate over the image area. The 
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Figure 7. The fractal structures for dimensions D= 1.5, 1.35, 1.25 and 1.0 (q - 1, 2, 3, and 
•.). The thickness of the lines corresponds to the current. strength, and current conservation 
has been satisfied at each branching point. 
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Figure 8. The time-averaged emission pattern for 
q: 3. The temporal emission pattern has been time 
averaged for about a millisecond (dura,tion of sprite). 
The column-integra,ted emission intensity was about 
100 kR for an optimal optical path. 

peak emission intensity for an optimal column inte- 
gration is about 100 kR. 

The emission intensity depends on the type of dis- 
charge. The maximum intensit, y in kilorayleighs for a 
optima,1 column integration along the x axis is shown 
in Figure 9 as a function of t, he dimension of the 
discha,rge D(q). Since the optical emission intensity 
is ext, remely sensitive to the power density, a fa,ctor 
of 2 on the electric field strength can have profound 
effects on the emission pattern of a given fractal dis- 
charge. 

As seen in Figure 9, different fracta, ls require dif- 
ferent current peaks (or propagation speed) to pro- 
duce similar emissions intensities. For the four frac- 

ta, ls of Figure 7 we find the necessary current peak Io 
needed to produce an emission intensity of about 100 
kR. The corresponding emission patterns are shown 
in Figure 10 with their peak current Io, which is re- 
lated to the total charge discharge as seen above. 
We note that the emission pattern corresponding t,o 
i, he fra,ctal q - 3 has considera, ble spatial structure 
as compared with the or, her cases in the figure. We 
see that by having a spa, tia, lly structured radiation 
pa,ttern, the fracta,ls can increase the power density 
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Figure 9. The ma, ximun• intensity in kilorayleighs as a fimction of the dilnension. The 
gra,ph has been interpolated by a cubic spline, but the actual points are shown by asterisks. 
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Figure 10. The emissions patterns at the line y-10 km corresponding to the four fractal 
structures of Figure 7 which have dimensions D "• 1.5, 1.35, 1.25, and 1.0. The current is 
chosen so that the peak emission intensity is about, I(kR)_•100 kR, and/3- 0.025. 

locally in specific regions of the ionosphere and gen- 
erate considerable optical emissions with relatively 
low (lnore realistic) lightning discharge parameters. 

5. Conclusions and Discussions 

A novel model (Figure 1) for the formation of red 
sprites, which incorporates the fracta.1 nature of the 
horizontal lightning discharges or of a spider light- 
ning type, was presented. The fractal structure of 
the discharge is reflected in the subsequent opti- 
cal elnission pattern. Such a model fits the qua.1- 
ita. t. ive model for the generation of red sprites by 
L:_qon. s [1996], which is based on the fact that hor- 
izontal discharges of the order of 100 km have been 
observed in connection with positive cloud-to-groud 
(+C.G) events. The model starts with the initial 
spider lightning followed by the positive leader to- 
ward the ground, which, in turn, is followed by the 
positive return stroke. The latter acts as a charge 
put, in the center of a Lichtenberg-like figure, i.e., 

the lightning discharge propagates along the spider 
channel. Evidence for these types of models has been 
obtaiued from a set of measurements of the proper- 
ties of the discharges in correlation with the sprites. 
Red sprites seem to be uniquely correlated with +CG 
discharges, but only some of the +CG discharges ac- 
tually generate sprites. Time correlation studies of 
the time delay between the +CG events and the as- 
sociated sprite have shown that it can reach more 
than tens, and sometimes hundreds, of milliseconds 
[Lyons, 1996], suggestive of the time delay required 
to develop the horizontal intracloud fractal discharge. 
As mentioned by Lyons [1996] the sprite-generating 
storms seem to have dimensions in excess of 100 km. 

Such large sizes are also required for the generation 
of the long horizontal discharges. The similarity be- 
tween lightning discharges and dielectric breakdown 
helps to understand the role played by +CG dis- 
charges in red sprite generation. Surface dielectric 
breakdown develops a much more intense structure 
if caused by an immerse positive needle rather than 
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by a negative one, as revealed by the Lichtenberg fig- 
ures given by A tten and Saker [1993]. A simple phys- 
ical explanation of this effect is that the positively 
charged needle pulls electrons froin the inedia, which 
is more energetically efficient than pushing electrons 
ejected by the negatively charged needle. Similarly, 
the intracloud lightning discharge will acquire a bet- 
t. er developed fractal structure if caused by a positive 
rather than a negative return stroke. 

For an optimal configuration, so that, the fields get 
projected upward, the lightning discharge must be 
horizontal, i.e., the so-called intracloud lightning or 
"spider lightning" [L,qous, 1994]. According to L.qons 
[1996], lightning discharges having a peak current of 
up to 200 kA are associated with sprites. We assume 
that a fraction of this current will be deflected from 

the cloud back into the lightning channel, while ap- 
proximately ha. lf of the peak current, will go to the in- 
tracloud discharge. Thus the intracloud current peak 
could reach almost 100 kA. Statistics of the speed of 
propagation for intracloud lightning are incomplete. 
The propagation speed during a cloud-to-ground re- 
turn stroke can reach speeds of about • • 0.1-0.5 
[•man, 1987], while the propagation speed of intr- 
acloud discharges is at least an order of magnitude 
lower, and hence we take ,d • 0.01-0.05. 

Certain fractals can radiate more effectively than 
others, but, in general, this problem is very com- 
plicated. The power density, and thus the emis- 
sion pattern and intensity, scales as S(W/m •) • 
32I• f(D)g(0) in the far field of the small line el- 
ements. For a specific dimension, i.e., D(•/ = 3) _• 
1.25, we obtained a.n emission intensity of about 100 
kR, with d = 0.025 and Io = 200 kA. However, using 
the above scaling for the radiated field, we can gen- 
erate a similar radiation pattern with /• = 0.05 and 
Io = 100 kA. The optical emission pattern depends 
on the structure of the discharge, but we conjecture 
that the most relevant structural parameter in deter- 
mining the spatial structure of the emissions is the 
dimension of the self-similar fractal. Even though 
we live in a world where dielectric discharges seem 
to have D • 1.6 [Sander, 1986; Nicmcyer ½t al., 
1984], lightning discharges seem to show lower di- 
mensions, a fact that lnight become relevant due to 
the sensitivity of the emission strength on the ffactal 
dimension of the discharge. The optimal emissions 
intensity is obtained for dimensions D ___ 1.25 for the 
fractal model used above. In this case, the ionization 

starts occurring for Io > 200 kA and .3 = 0.02,5 (i.e., 

for Io > 200 kA the equation for the evolution of the 
electron density n½ should be included). 

It can be observed from our model of sprites that 
the main body of the sprites is constrained between 
80 and 90 km in height. The latest observations 
of sprites reveal filaments that can be described as 
streamers [Curemet and Inan, 1997] propagating down 
from the main body of the sprite with a cross-sectional 
diameter of 100 m or less. Given the nucleated spa- 
tial structure in the conductivity produced by the 
fractal lightning discharge, the streamers would start 
naturally in the presence of a laminar field. The lain- 
inar field includes the field induced in the ionosphere 
during the cloud charging process. Also, some ef- 
fect might come froin the near-zone field described 
in equa, tion (14). Therefore a comprehensive model 
of sprites, which includes the main body produced by 
the fractal lightning and the subsequent streamer de- 
velopment, has to be developed. It, involves both the 
laminar and electromagnetic lightning-induced fields 
and their effects in the lower ionosphere can be de- 
veloped from a model that solves the nonlinear wave 
equation, equation (7), and includes ionization and 
charge separation. Such streamer concept. naturally 
allows for the expansion of the heated region (of the 
sprite) to a wider range in heights. 

Appendix' Electric Fields From 
the Fractal 

A current pulse propagates with speed /3- v/c 
along a fractal structure. At. the nth line element 
with orientation L• and length L,,, which is paramet- 
rized by 1 ½ [0, L,,], the current is given by J, (s,,l, t) 
= I,, I(t-s,, +l/v)(the time dependence I(t)is given 
by equation 4), where .s• is the path length along the 
fractal (or if you prefer, a phase shift.). The radia- 
tion field is the superposition, with the respective 
phases, of the small line current. elements that form 
the fractal. For a. set. {rn, Ln, I,,, Sn I n - 0, ..., N} of 
line elements, the Fourier transformed hertz vec. tor 
is given by 

II(x,w) y•, if.. jfo L" J.(s. 1 w)eikllx-•"-'g-II -- • '' ^ dl, 
{n} [[ x- rn -1Ln II 

a.s a solution to Maxwell's equations. Here I,• is the 
strength of the current at, the nth line element, s• is 
the path length along the fractal, r,, is the position 
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of the element, J, (s,, l, w) - I, I(w)e i •-(sn+l) is the 
Fourier-transformed current strength at the nth line 
element, x is the position at which we measure the 
fields, w is the frequency, and k - •-. Values with the ½ 

circumfiex indicate unit vectors, and d,-]] x- r,• ]] 
means the standa. rd distance from the line element 

to the field position. 
To simplify the notation, we will denote d,• = 

x - rn. Note that, in general, the size of a single 
element L,• 100 m is much smaller than the dis- 
tance to the ionosphere d, •, 80 kin, i.e., L, << d, 
Therefore we can use the far-field approximation of 
the small elements to carry the above integral. Of 
course, the nonuniformity in the radiation pattern 
will be due to the phase coherence, or interference 
pattern, between the different elements that form the 
fra.ctal. The electric field is then constructed from 

E(x,w) - X7 x X7 x II(x,w). We then invert the 
Fourier transform of the field to real time and 

rain the spatiotemporal radiation pattern due to the 
fractal discharge structure, which is given by 

E(x, t) - • cdn(1 -- fl(•n' an)) 
t--T1 

t -- T 2 

-d,,(L,•. d.) I + •-•I1 + -•-• I2 ) (14) t--ra 

where 

I1(t) -- drI(r) 

I2(t)- dv dv I(v') 

can be calculated exactly for the current described 
above and where 

dn 
c v 

d.+(L,•.d.)L., s.,+L,• 
r2= + 

c v 

The values of rl and r2 correspond to the causal time 
delays from the two endpoints of the line element. 

For simplicity we will compute the electric field in 
the far-field approximation of equation (14) for the 
small line elements (kd,• < 2•v), and this is given by 

E(x, t)- y•. cd•(1 -/3(• 7 •1•)) Ln (15) 
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