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[1] Using nonlinear dynamical techniques, we statistically investigate whether the
simulated substorms from global magnetohydrodynamic (MHD) models have a
combination of global and multiscale features, revealed in substorm dynamics by Sitnov et
al. [2000] and featured the phase transition-like behavior. We simulate seven intervals of
total duration of 280 hours from the data set used in the above works [Bargatze et al., 1985].
We analyze the input–output (vBs–pseudo AL index) system obtained from the global
MHD model and compare the results to those inferred from the original set (vBs–observed
AL index). The analysis of the coupled vBs–pseudo AL index system shows the first-order
phase transition map, which is consistent with the map obtained for the vBs–observed
AL index system. Although the comparison between observations and global MHD
simulations for individual events may vary, the overall global transition pattern during the
substorm cycle revealed by singular spectrum analysis (SSA) is statistically consistent
between simulations and observations. The coupled vBs–pseudo AL index system also
showsmultiscale behavior (scale-invariant power law dependence) in SSA power spectrum.
Besides, we find the critical exponent of the nonequilibrium transitions in the
magnetosphere, which reflects the multiscale aspect of the substorm activity, different from
power law frequency of autonomous systems. The exponent relates input and output
parameters of the magnetosphere. We also discuss the limitations of the global MHDmodel
in reproducing the multiscale behavior when compared to the real system. INDEX TERMS:
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1. Introduction

[2] The global behavior of the magnetosphere in response
to the solar wind input is known to be coherent to a large
extent [Sharma, 1995; Klimas et al., 1996]. The largest
substorm phenomena, e.g., global reconfiguration, are in
reasonable agreement with low-dimensional magnetospheric
models and in particular those of inverse bifurcations.
Models of the magnetospheric behavior during substorms,
e.g., near-Earth neutral line (NENL) model [Baker et al.,
1996], imply its global coherence and self-organization.

[3] At the same time there is growing evidence of hier-
archical multiscale aspect of magnetospheric activity repre-
sented first of all in the form of various power law spectra
[Tsurutani et al., 1990; Takalo et al., 1993; Ohtani et al.,
1995, 1998; Lui, 1998; Uritsky et al., 2001]. This evidence
has led to models [Consolini, 1997; Chapman et al., 1998;
Lui et al., 2000; Klimas et al., 2000] based on the hypothesis
that the magnetosphere is in a state of self-organized
criticality (SOC) [Bak et al., 1987]. The original SOC model
is based on the model of sandpiles, where the critical state is
characterized by power law fluctuation spectra. Briefly, a
system is in a state of SOC when the statistics of the energy
release events (avalanches) reveal no characteristic length or
timescale and, as a result, the appropriate spectra obey power
laws. Sergeev et al. [1996] give a detailed review on the
multiscale aspects of the substorm activity.
[4] Both the self-organization and the SOC models have

their limitations. The self-organization model cannot
explain the multiscale behavior of the substorms. The
typical SOC model is essentially independent of the driver

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A1, 1037, doi:10.1029/2001JA009237, 2003

1Department of Astronomy, University of Maryland, College Park,
Maryland, USA.

2Institute for Plasma Research, University of Maryland, College Park,
Maryland, USA.

3Department of Physics, Dartmouth College, Hanover, New Hampshire,
USA.

Copyright 2003 by the American Geophysical Union.
0148-0227/03/2001JA009237$09.00

SMP 21 - 1



and thus is autonomous, which is not the case with the
Earth’s magnetosphere. The SOC models are too simplified
to capture the global coherent behavior of the magneto-
sphere. It has been found recently that the global coherent
(self-organization) and multiscale (SOC) aspects of the
magnetospheric behavior can be reconciled in terms of
nonequilibrium phase transition [Sitnov et al., 2000,
2001], consistent with earlier phenomenological models of
substorm activity [Sergeev et al., 1996] and magnetospheric
convection [Chen and Wolf, 1993]. The global coherent
dynamics of substorms can be described as the transition
between two states (quiet ground state and active state), and
this resembles closely a phase transition. The dynamical
evolution of substorms in a phase space reconstructed from
observational data can be compared with the characteristic
temperature–pressure–density (TPD) diagram of equili-
brium water–steam system found by Sitnov et al. [2000].
On the other hand, the multiscale behavior may be
explained by deviations from this low-dimensional picture
close to the critical point, characteristic of second-order
phase transitions [Stanley, 1971]. Recently, Sitnov et al.
[2001] have computed a critical exponent of the nonequili-
brium transitions in the magnetosphere, which reflects the
multiscale aspect of the substorm activity, different from
power law frequency and the scale spectra of autonomous
systems. This exponent relates input and output parameters
of the magnetosphere and is consistent with a second-order
phase transition behavior, different from SOC.
[5] The introduction of the concept of nonequilibrium

phase transition opens a new area in the study of magneto-
spheric substorms, as it shows how to reconcile global and
multiscale dynamical features in complex systems. The
phase transition diagram and multiscale features were
obtained by Sitnov et al. [2000] from analysis of hundred
hours of observed input–output data of the coupled solar
wind–magnetosphere system, compiled by Bargatze et al.
[1985]. The database contains 34 intervals of correlated
measurements of the auroral electrojet index AL and solar
wind input, each 1–2 days in length. The phase transition-
like behavior of the magnetospheric substorms was discov-
ered by reconstructing the dynamical evolution of large
number of events.
[6] In the past, the global magnetohydrodynamic (MHD)

studies have been focused on the simulation of individual
substorm events and comparison with satellite and ground
observational data [Fedder et al., 1995; Wiltberger, 1998;
Goodrich et al., 1998a, 1998b; Lyon et al., 1998; Lopez et
al., 1998; Wiltberger et al., 2000; Papadopoulos et al.,
1999; Slinker et al., 2001; Raeder et al., 2001] and were
quite successful in reproducing the observed substorm
activities in both the magnetosphere and the ionosphere.
In this paper, we investigate whether the simulated sub-
storms produced by the global MHD model have the non-
equilibrium phase transition-like features as revealed by
Sitnov et al. [2000]. We simulated seven intervals of total
duration of 280 hours from the same Bargatze et al. [1985]
data set with the LFM global MHD model. Using the same
phase space reconstruction techniques as in the studies of
Sitnov et al. [2000, 2001], we analyzed the input–output
system as obtained from the global MHD model and
compared the results to those of Sitnov et al. [2000,
2001]. It should be emphasized that the main goal of our

study was not to reveal once again the signatures of the
phase transition-like behavior of the magnetosphere or
elaborate further those ideas (this is being done nowadays
in the complementary studies). We considered phase tran-
sition signatures first of all as a consistent and convenient
set of global and multiscale features of the substorm
dynamics, which are useful for statistical verification of
various models of the magnetosphere.
[7] In section 2, we introduce the computational model

and data processing techniques. In section 3, the pseudo AL
index as simulated from the global MHD model is analyzed
and compared with the results of Sitnov et al. [2000, 2001].
Finally, conclusions are given.

2. Input and Output Data

[8] The LFM global MHD model was driven with the
solar wind conditions observed by the IMP8 satellite (data
available at the data center of UCLA) for seven intervals
selected from the Bargatze et al. [1985] data set, each 1–2
days in length. The original Bargatze et al. [1985] data set
contains 34 intervals and is divided into three subsets (1–
15, 16–26, and 27–34) representing different levels of
substorm activity. Several studies have been conducted
with this data set [Blanchard and McPherron, 1993; Smith
and Horton, 1998] which contains salient features of sub-
storms. The seven intervals simulated in this paper are
chosen from the second Bargatze et al. [1985] subset
associated with medium activity. The total duration of these
seven intervals are around 280 hours. These seven intervals
are characterized statistically by simple relation between
input and output and are suitable for benchmarking the
global MHD simulations statistically. Other intervals with
strong activities have not been examined yet and will be
examined.
[9] In other words, the driver we used in the global MHD

simulation is the solar wind condition observed during the
seven intervals which coincide with those in the Bargatze et
al. [1985] data set. The solar wind variables are the density,
velocity (vector), magnetic field (vector), and thermal
pressure. The data gaps are filled with interpolated data.
These solar wind variables are propagated to the front
boundary of the global MHD model in the usual sense
described by Wiltberger et al. [2000]. The full ionospheric
model is used according to the studies of Fedder et al.
[1995] and Wiltberger et al. [2000] and dipole tilt is
included.
[10] The simulated magnetospheric and ionospheric

response were saved every minute in SM coordinates. With
these data files, we built the database of the coupled input–
output system given by the global MHD model. The mod-
eled magnetospheric response are sampled at x = 20 RE, y = 0,
and z = 1 RE upstream, which are regarded as the solar wind
input. The solar wind input contains several components.
Since the substorm activity is closely related to the south-
ward interplanetary magnetic field, in the analysis of this
paper, the solar wind input is represented by the induced
electric field vBs, where Bs is the southward component of
the interplanetary magnetic field (IMF) (Bs = 0 when Bz > 0;
Bs = �Bz when Bz < 0) and v is the component of the solar
wind velocity along the Earth–Sun axis. The same solar
wind input is used by Sitnov et al. [2000] and other studies
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[Blanchard andMcPherron, 1993; Smith and Horton, 1998].
We note that magnetospheric substorms are influenced by
many factors other than vBs, e.g., solar wind ram pressure
and other solar wind magnetic field components, and their
physics is still a hotly debated research area. The substorms
closely related to the variation of vBs belong to a major
subclass of the whole family of magnetospheric substorms.
Understanding the vBs–AL index coupling contributes sig-
nificantly to the understanding of the magnetospheric sub-
storm physics [Kivelson and Russell, 1995; Vassiliadis et al.,
1996; Smith and Horton, 1998].
[11] The pseudo AL index is used as the major measure

of the ionospheric response during substorms. The pseudo
AL index is produced from the maximum westward iono-
spheric Hall current that has been searched throughout the
grids in the northern hemisphere. Observational AL index is
derived from the H component of the magnetic field
monitored at 12 stations distributed in longitude. It is
obtained from the lower envelope of the single combined
plot of the deviations at all stations of the component H
magnetic field from its quiet time value [Jursa, 1985]. The
observational AL index is a measure of the strength of the
auroral electrojet and the AL index perturbations are mainly
produced by the E-W (azimuthal) ionospheric Hall current
during magnetospheric substorms [Kamide and Baumjo-
hann, 1993]. The pseudo AL index produced from global
MHD models is very close to the observed AL index during
substorm events. Figure 1 shows examples of the relation
between vBs and the observed AL index together with the
simulated pseudo AL index for two cases from the Bargatze
et al. [1985] data set. The top two panels (denoted as Figure
1a) in Figure 1 are for the 16th interval on 27–29 May 1974
in the Bargatze et al. [1985] data set and covers about 35
hours of actual time; the bottom two panels (denoted as
Figure 1b) are for the 24th interval on 26–27 August 1974
in the Bargatze et al. [1985] data set and covers about 40
hours. In Figures 1a and 1b, the top panel shows the vBs

normalized by its standard deviation; the bottom panel
shows the observed AL index (solid line) and the simulated
pseudo AL index (dotted line), both of which are normal-
ized by their own standard deviation, respectively. Both of
the plots in Figure 1 show that the simulated pseudo AL
index resembles the observed AL index closely in dynam-
ics. However, it is difficult to judge the closeness directly
from the point to point error. Therefore, the coupled vBs–
pseudo AL index system is analyzed statistically using
nonlinear dynamical techniques and compared to the results
of Sitnov et al. [2000, 2001] that are based on the analysis of
vBs–observed AL index system. The idea is to compare the
dynamical behavior of the system derived from the MHD
simulations to those from the observations.
[12] In the next section, we illustrate the phase space

reconstruction technique used to analyze the coupled vBs–
pseudo AL index data sets.

3. Analysis of the Coupled vBs–Pseudo AL
Index System

3.1. Singular Spectrum Analysis (SSA)

[13] A salient feature of a chaotic dynamical system is
that the number of variables needed to describe the
dynamics can be much smaller than the number of physical

variables [Takens, 1981]. An estimate of the actual number
of variables can be obtained from SSA. Following the
analysis used by Sitnov et al. [2000], we use a modified
SSA or the so-called principal component analysis (PCA)
[Broomhead and King, 1986] to include both input and
output time series. The input is the product vBs time series,
essentially the solar wind induced electric field in the y
direction, which is related to the reconnection rate near the
Earth’s front magnetopause. The output variable is the
pseudo AL index produced from the global MHD model.
The technique is based on the singular value decomposition
(SVD) [Press et al., 1992] of the so-called trajectory matrix
constructed from the time series data by time delay
embedding:

Y tið Þ ¼ O tið Þ; . . . ;O ti � m� 1ð Þtð Þ;ð vBs tið Þ; . . . ;
vBs ti � m� 1ð Þtð ÞÞ; ð1Þ

where i = 1,. . .,N. The time delay t and the embedding
dimension m are chosen from the dynamical properties of
the system. The typical value of t is taken to be 2 min and
that of the dimension m of the embedding space is 40,
which provide a time window of 80 min comparable to the
typical substorm scales. The input and output parameters are
normalized separately by the corresponding standard
deviations to make them more homogeneous.
[14] This matrix Y contains all the dynamical features of

the system embodied in the data and the state–space
reconstructed by time delay embedding is quite noisy,
mainly due to the randomness of the solar wind driver.
Since the essential features of the dynamics may be
described by a smaller number of linearly independent
vectors, the solar wind noise can be removed by the
technique of SSA. The matrix Y can be represented in the
form

Y ¼ UWVT ; ð2Þ

using SVD technique. Here, U is an N � 2 m matrix; W is a
2 � 2 m diagonal matrix; and V is a 2 � 2 m orthogonal
matrix. By construction, VTV is the identity matrix and W is
a diagonal matrix with the element wj, where wj

2 are the
eigenvalues of the semipositive definite matrix YTY. V
contains the SVD eigenvectors, while U determines
principal components Pj, which are the projections of the
original trajectory matrix Y along the eigenvectors, namely,
Pj � Ujwj = (YV )j.
[15] For an ideal system, the number of nonzero eigen-

values of YTY gives the number of variables needed to
model the system. For a system with noise, SSA can be used
to estimate the effective dimension of the system by select-
ing diagonal element wj considerably above a particular
noise floor wfl. Then, the principle components defined by
Pj which corresponds to these wj define the corresponding
attractor (if it exists) in the embedding space [Ott, 1997].
These linearly independent eigenvectors define the principle
directions and thus the principal coordinates in the embed-
ding space, and the time series of these principal variables
may be obtained by projecting the given time series onto
these directions [Sharma, 1993, 1994; Sharma et al., 1993].
The projected variables may then be used to describe and
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reconstruct the dynamics. SSA removes the turbulent or
random effects and yields the deterministic dynamical
features. However, SSA uses linear techniques and conse-
quently the dimension it gives may be considered only as an
estimate. SSA may be regarded as a modification of Fourier
or wavelet analysis with data-derived basic functions [Pre-
isendorfer, 1988].

3.2. Singular Spectrum and Effective Dimension

[16] The singular spectrum of the coupled vBs–pseudo
AL index data were computed for time delays t = 2.0, 4.0,
and 6.0 min and for embedding dimensions m = 20, 40, and
60. These values are chosen to keep the analysis close to the
case studied by Sitnov et al. [2000], since the time reso-
lution of the two data sets are different. In the study of
Sitnov et al. [2000], t = 2.5, 5.0, and 7.5 min and m = 16,
32, and 48 were used. The total time windows (mt) are in
the range 40–120 min. Figure 2 shows the singular spec-
trum (eigenvalues wj) for different time delays t = 2.0, 4.0,
and 6.0 min and embedding dimension m = 40. Figure 3
shows the eigenvalues for t = 2.0 min and different
embedding dimension m = 20, 40, and 60. All the eigen-
values have been normalized to the corresponding maxi-
mum eigenvalue.
[17] Figures 2 and 3 show that two or three leading

eigenvalues dominate over the others (the fourth eigenvalue
is less than 0.15). This is consistent with the results based
on the analysis of the coupled vBs–observed AL index

system of Sitnov et al. [2000]. Here, the second largest
eigenvalue is less than 0.3, while in the study of Sitnov et al.
[2000] the second largest eigenvalue is larger than 0.4. This
implies that the leading eigenvectors of the coupled vBs–
pseudo AL index system which are derived from global
MHD model are more dominant. This issue is readdressed
in section 3.5 when we discuss the multiscale feature of
magnetospheric substorms.
[18] In order to assess the fractal dimension of the system

trajectory in the embedding space, we calculate the coastline
dimension of the trajectory. The coastline dimension of the
trajectory set in the embedding space [Abarbanel et al.,
1993] is given by

Df � D Np

� �
¼ log Ntð Þ=log Np

� �
; ð3Þ

where Np is the number of partitions along each principal
component Pj ( j = 1, . . ., 4 as in our case) and Nt is the
number of cubes created because of this partitioning that
contain at least one point of the trajectory.
[19] Figure 4 shows the coastline dimension of the

coupled vBs–pseudo AL index system as a function of the
partition Np along each of the m directions in the m-
dimensional embedding space for different m = 1, 2, 3,
and 4. Here, the time delay t is 2 min. Figure 4 shows that
when the embedding dimension is increased over 2 (m = 3,
4), the coastline dimension converges to Df = 2. This is
typical of systems with finite dimension. This implies that

Figure 1. (opposite) Examples of the relation between vBs and the observed and simulated AL index from the Bargatze et
al. [1985] data set. (a) Top two panels: for the 16th interval on 27–29 May 1974 in the Bargatze et al. [1985] data set. (b)
Bottom two panels: for the 24th interval on 26–27 August 1974 in the Bargatze et al. [1985] data set. In (a) and (b), the top
panel shows the vBs normalized by its standard deviation. The bottom panel shows the observed AL index (solid line) and
the simulated pseudo AL index (dotted line).

Figure 2. Singular spectrum of the coupled vBs–pseudo
AL index data for different time delay t = 2.0, 4.0, and 6.0
min and m = 40.

Figure 3. Singular spectrum of the coupled vBs–pseudo
AL index data for different embedding dimension m = 20,
40, and 60 and t = 2.0 min.
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the trajectory lies mainly on a two-dimensional (2-D)
manifold in the embedding space. In the study of Sitnov
et al. [2000], the coastline dimension of the coupled vBs–
observed AL index system also converges to Df = 2 for the
embedding dimension larger than 2. Therefore, the coastline
dimension of the coupled system derived from the global
MHD model is consistent with that of the input–output
system based on observations.
[20] Both singular spectrum and fractal dimension anal-

ysis show that the manifold on which the trajectory of
substorm dynamics lies can be approximated by a 2-D
surface. This helps us in reducing effectively the noise and
capturing the essential dynamical features of the system
obtained from the global MHD simulations. Therefore, we
proceed to reconstruct the substorm dynamics in the
reduced phase space created by the leading eigenvectors.
In the following analysis, the main eigenvectors are limited
to be 3. The trajectory matrix Y formed with t = 2 min and
m = 40 is projected onto the three leading eigenvectors. The
manifold in the 3-D space is approximated by a 2-D
surface.

3.3. Original and Rotated Eigenvectors

[21] Figures 5a–5c show the original three leading eigen-
vectors (the first, second, and third eigenvectors) corre-
sponding to the three largest eigenvalues obtained from the
SSA. Each eigenvector is composed of output and input
components. The output component V( j) ( j = 1–40) is
black-shaded and the input component V( j) ( j = 41–80) is
gray-shaded. As we can see, the input and output compo-
nents are mixed in each eigenvector.

[22] The ratio between the output and input components
are not maximized or minimized in the original eigenvector
and make it difficult to visualize and understand the mani-
fold. As suggested by Sitnov et al. [2000], we rotate the
eigenvector as

V1 ! V1 cosaþ V2 sina

V2 ! �V1 sinaþ V2 cosa

8<
:

9=
;


V2 ! V2 cos bþ V3 sin b

V3 ! �V2 sin bþ V3 cos b

8<
:

9=
;:

ð4Þ

The goal of each rotation is to minimize or maximize the
ratio between the output ( j = 1–40) and input ( j = 41–80)
parts so that the resultant variables approach either the
control or state parameter of some catastrophe model.
During the first rotation, we maximize the ratio j�j=1

40V1( j)/
�j=41
80 V1( j)j. While for the second rotation, we minimize the

ratio j�j=1
40V2( j)/�j=41

80 V2( j)j. In this way, the first eigenvec-
tor is rotated to a direction along which the output
component is dominant and the second eigenvector is
rotated to a direction along which the input component is
dominant. The adjustment is achieved through trial and
error and in this case a = 0.35 and b = 0.30. The rotated
three leading eigenvectors (we call them basis eigenvectors)
are shown in Figures 5d–5f. From Figures 5d–5f, we see
that the first vector is dominated by the output part, while
the second and the third vector are controlled by the input
component. The orthogonality among the three newly
obtained basis eigenvectors is maintained.

3.4. First-Order Phase Transition-Like Behavior

[23] After obtaining the rotational parameter a and b, the
principle components Pj ( j = 1, 2, 3) are projected onto the
newly rotated basis vector (shown in Figures 5d–5f ). In
other words, we are studying the trajectory manifold formed
by Pj ( j = 1, 2, 3) in the 3-D space with axes formed by the
newly obtained basis eigenvectors. Since for the first basis
eigenvector, the output component ( pseudo AL index) is
dominant, we call the corresponding principle component
along this eigenvector as Po, which is closely related to
time-averaged output. For the second basis eigenvector, the
input component (vBs) is dominant, and the corresponding
principle component is called Pi. Pi is closely related to
time-averaged input. For the third basis eigenvector, the
input component is dominant and experiences one period of
oscillation, and the corresponding principle component is
called P3. P3 is roughly proportional to the time derivative
of the input component.
[24] Figure 6a shows the 2-D surface approximation of

the manifold representing magnetospheric dynamics on the
basis plane (P3, Pi). The principle component Po is color-
coded. Surface approximation is achieved through standard
triangulation procedure. The circular flows given by dPi/dt
and dPo/dt are represented by arrows. This map is derived
from the coupled vBs–pseudo AL index system.
[25] Figure 6b, obtained by Sitnov et al. [2000], is the

similar surface approximation of the manifold to that in
Figure 6b. This map is constructed for the coupled vBs–
observed AL index system derived from the second subset
of the Bargatze et al. [1985] data set. Figure 6a resembles
Figure 6b in the sense that both of the maps capture the
phase transition-like behavior qualitatively.

Figure 4. Fractal dimension of the coupled vBs–pseudo
AL index system as a function of the partition Np. Np is the
number of partitions along each of the m directions in the
m-dimensional embedding space for different m = 1, 2, 3,
and 4.
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[26] In Figure 6a, Pi = 0 and P3 = 0 mark the start of the
substorm cycle. The flow arrows show the trajectory of the
substorm cycle. During the substorm cycle, when Pi is
increased over zero, Po remains nearly 0 and experiences
some small decreases (changing from red to yellow). During
this interval, P3 is increased first, then remains nearly
constant around 10. This phase corresponds to the growth
phase in the substorm cycle. Then Po takes large negative
values. The flow arrows are the largest during this transi-
tion. This rapid transition and the following intensifications
(dark blue shaded area) correspond to the expansion phase.
The restoration of the system to the original state involves
the decrease of Pi and �Po. This phase corresponds to the
motion toward left bottom corner and is termed as recovery
phase in the substorm cycle.
[27] There have been many discussions regarding the

timing of the substorm onset. The coupled input–output
system studied here is constructed with the pseudo AL
index and vBs input. The auroral electrojet index itself alone

is not sufficient to determine the substorm onset, for which
combined observations of the auroral image, AL and AE
index and tail satellite observations are needed. Further-
more, Figure 6a presents the substorm cycle with Pi closely
related to time-averaged input and Po closely related to
time-averaged output. Therefore, we do not expect that the
transition revealed in Figure 6a by the large falling down
will coincide with the usual substorm onset defined from the
combination of all available observations. In any case,
Figure 6a reconciles the essential features of many substorm
cycles revealed by the coupled vBs–pseudo AL index on the
same map.
[28] Both Figures 6a and 6b are obtained with the same

data processing technique, namely SSA. Figure 6a is con-
structed from the simulated system and Figure 6b is con-
structed from the real system. Both Figures 6a and 6b show
that the evolution of the magnetosphere on the largest scale
is quite regular and resembles the temperature–pressure–
density diagram of equilibrium phase transition [Stanley,

Figure 5. (a)–(c) The original three leading eigenvectors obtained from the SSA. (a) The first
eigenvector, (b) the second eigenvector, and (c) the third eigenvector. (d)–(f ) The three leading
eigenvectors after the eigenvectors in (a)–(c) are rotated. (d) Obtained from rotating the eigenvector in
(a). (e) Obtained from rotating the eigenvector in (b). (f ) Obtained from rotating the eigenvector in (c).
Each eigenvector is composed of output and input components. The output component V( j) ( j = 1–40)
is black-shaded and the input component V( j) ( j = 41–80) is gray-shaded.
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1971]. The fact that Figure 6a resembles Figure 6b implies
that the global MHD model reproduces successfully the
phase transition-like behavior that exists in the real sub-
storm cycle. Although, the comparison between observation
and individual global MHD simulation may vary, the over-
all global transition pattern during the substorm cycle
revealed by SSA is consistent between simulations and
observations. The whole procedure of phase transition
analysis using SSA is reliable in the sense that it reveals
the qualitative features of global configuration change
resides statistically both in the real system and in the global
MHD simulation.
[29] As explained by Sitnov et al. [2000], both the

approximated 2D manifold and the corresponding circula-
tion flows shown in Figure 6a resemble a simple low-
dimensional model of a magnetospheric substorm as a cusp
catastrophe (inverse bifurcation) [Gilmore, 1993]. One of
the substorm scenarios based on the cusp catastrophe was
proposed by Lewis [1991]. Similar low-dimensional models
were proposed to explain the substorm activity and used to
fit the data by Baker et al. [1990], Klimas et al. [1992], and
Horton and Doxas [1996].
[30] Figure 7 shows the schematic cusp catastrophe

manifold that was expected to approximate the substorm
dynamics of the magnetosphere. The schematic map is
similar to the model of Lewis [1991]. The evolution of an
isolated substorms is shown by dashed arrows.
[31] According to the cusp catastrophe scenario, the

dynamics of the magnetosphere is described by the evolu-
tion equation for the state parameter z

dz

dt
¼ � @U z; c1; c2ð Þ

@z
; ð5Þ

where the effective potential is defined as

U z; c1; c2ð Þ ¼ z4 þ 2c1z
2 þ 4c2z ð6Þ

and has two control parameters c1 and c2. These parameters
control the quasi-static changes of z, which is possible as
long as the condition

@U z;c1;c2ð Þ
@z ¼ 0 is satisfied. The folded

surface shown in Figure 7 is determined through this
condition.
[32] In the model [Lewis, 1991], the state parameter z is

the nightside magnetic field orientation and the control
parameters c1 = �(open flux) + constant and c2 = (nightside
� dayside) reconnection rate. In our model, the state
parameter is the AL index. The comparison of our results
with the general cusp catastrophe model (5) and (6) suggests
slightly different interpretation of the control and state
parameters. According to panel d in Figure 5, the parameter
Pi resembles the first parameter c1 of the cusp catastrophe
model. Pi may also be close to the parameter c1 of Lewis
[1991] as it is proportional to the inductive electric field vBs

integrated in time. The parameter P3 is similar to the second
parameter c2 in the model (5) and (6) as it reflects the
response of the magnetosphere to solar wind loading.
According to panel (f ) in Figure 5, P3 represents the
difference between the immediate dayside inductive electric
field, which is proportional to vBs (negative gray bay in
Figure 5f ) and its delayed value (positive gray bay). The
delay is comparable to the propagation time of the signal

Figure 6. (a) The 2-D surface approximation of the
manifold representing magnetospheric dynamics on the
basis plane (P3, Pi). The principle component Po is color-
coded. The circular flows given by dPi/dt and dPo/dt are
represented by arrows. The phase transition map is obtained
from the coupled vBs–pseudo AL index system. The pseudo
AL index is derived from global MHD model. (b) The
similar map as in (a) derived by Sitnov et al. [2000] for the
coupled vBs–observed AL index system. This map is
constructed with the second subset (16–26) of the Bargatze
et al. [1985] data set.
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from the subsolar magnetopause to the distant neutral line.
Therefore the delayed component mimics the night side
reconnection rate. However, in contrast to the study of
Lewis [1991], both Pi and P3 are characteristics of the solar
wind, which controls the magnetospheric activity. This is
closer to the original catastrophe scenario (5) and (6) but
differs from the interpretation of Lewis [1991].
[33] The potential in (6) may have both one and two

minima corresponding to different equilibrium states of the
system. The onset of the substorm is represented as a local
fold catastrophe arising due to the disappearance of the
upper potential minimum. In this way, Figure 6a fits into the
low-dimensional scheme of magnetospheric substorm as a
cusp catastrophe illustrated in Figure 7.
[34] Although catastrophe-like picture can explain the

global transition revealed in Figures 6a and 6b on the
largest scale, there are still deviations from the ideal
catastrophe model. Sitnov et al. [2000, 2001] note that the
clear first-order phase transition structure gradually disap-
pears with the increase of the average activity. They also
observe multiscale features existing with the coupled input–
output system. Sitnov et al. [2000, 2001] propose another
interpretation that accounts for the deviations. The same
catastrophe-like picture and multiscale features may be
created by dynamical transitions. The bifurcation/catastro-
phe picture is associated with first-order dynamical phase
transitions, while the deviations from the ideal catastrophe
picture may be explained by second-order phase transitions
near the critical point. The first-order phase transition
picture suggests the location of the critical point, which

can be used to obtain the appropriate critical exponent. It is
quite interesting to study whether the results from global
MHD have multiscale features or not.

3.5. Multiscale Behavior

[35] The concept of the SOC is based on a simple model
of sandpile [Bak et al., 1987] and has been used widely in
the interpretation of catastrophic processes in open spatially
extended systems. The SOC concept has been used to
explain substorm activity on the basis of the observation
that some spectra obey power laws [Tsurutani et al., 1990;
Takalo et al., 1993; Ohtani et al., 1995, 1998; Lui, 1998,
Uritsky et al., 2001]. Sitnov et al. [2000] suggest that scale-
invariant or multiscale behavior originates from the second-
order phase transitions instead of SOC.
[36] SOC models emphasize that the input is not essential

because of the self-tuning properties of the system and
provide only one class of critical exponents, which relate
some parameter of the system, such as the energy released
with the spatial scale or characteristic frequency. While the
second-order phase transitions have at least one more class of
critical exponents that relate the input parameter of the
system, e.g., magnetic field or temperature, with its output,
e.g., magnetization or density. Vespignani and Zapperi
[1998] showed that the SOC state requires tuning and
consequently there are several scaling relationship between
input, output, and the internal state of the system.Chang et al.
[2001] point out that the paradigm ‘‘Forced SOC’’ (FSOC) is
more appropriate to describe the criticality behavior involved
with input or controlling parameters. We feel that this falls

Figure 7. Hypothetical cusp catastrophe manifold that was expected to approximate the substorm
dynamics of the magnetosphere according to the model of Lewis [1991]. The evolution of isolated
substorms is shown by dashed arrows.
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into the category of second-order phase transition and is not
SOC any more. In the studies of Sitnov et al. [2000, 2001],
two kinds of critical exponents are found with the new data-
derived image of substorms. The first critical exponent is
related to the scale-invariant (or power law) behavior of the
eigenvalues obtained from SSA as shown in Figure 8.
Figure 8 shows the singular spectra of the coupled vBs–
observed AL index system of Sitnov et al. [2000] on log-log
plot. The second critical exponent, which is the primary
distinctive feature between second-order phase transition
and SOC, is derived from the envelope max(�dPo/dt) of
the velocity time series v(ti) = dPo/dt. In other words, given
Pi, which is closely related to the time-averaged input, there is
a maximum decreasing rate for Po and max(�dPo/dt) scales
in power law with Pi. Using an analogy to the dynamical
Ising model in the mean field approximation, the connection
between the data-derived exponent of nonequilibrium tran-
sitions in the magnetosphere and the standard critical expo-
nent b of equilibrium second-order phase transitions is shown
to be b = b*/3. Sitnov et al. [2000, 2001] conclude that the
substorm dynamics of themagnetosphere resembles more the
conventional set of first and second-order phase transitions
rather than SOC or catastrophe model. In this section, we
investigate these two kinds of critical exponents using the

global MHD simulations and compare them to the results of
Sitnov et al. [2000, 2001].
[37] Figure 9 shows the singular spectra of the coupled

vBs–pseudo AL index system derived from the global
MHD model on log-log plot. Figure 8 indicates that the
singular spectrum of the observed AL index data alone
obeys power law with an exponent around �1. Figure 9
indicates that the singular spectrum of the pseudo AL
index data alone also obeys power law with an exponent
around �1.5. Both the observed AL index and the pseudo
AL index show multiscale behavior. But, the pseudo AL
index is much cleaner than the observed AL index in the
sense that its singular spectrum assumes steeper slope (in
log-log plot). This is because the global MHD model
works on large scales and low frequency regions and
smoothes local and high frequency fluctuations. Figure 8
also shows that the singular spectrum of the combined vBs

and observed AL index data obeys power law and assumes
the slope (in log-log plot) in between those of the singular
spectra of the vBs data and the observed AL index data,
separately. In Figure 8, the singular spectrum of the
combined data spreads for i > 40. While for the singular
spectrum of the combined vBs and pseudo AL index data
(in Figure 9), the slope of the singular spectrum changes

Figure 8. Log-log plots of SSA eigenvalues for observed AL or pseudo AL index and vBs parameters
alone as well as for the combined data in cases of the coupled vBs–observed AL index system from the
study of Sitnov et al. [2000]. t = 2.5 min, m = 32 in the case of combined data and m = 64 for input and
output parameters alone.
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around i = 50. In Figure 9, the slope of the spectrum of the
combined data is �1.33 for i < 50 and changes to �3 for i
> 50. For higher SSA components of the combined data
derived from the global MHD model, the spectrum decays
faster and the corresponding principle component is less
important.
[38] Figure 10 shows the rate of the positive and negative

changes of the parameter Po as a function of Pi obtained
from the analysis of the global MHD model data. The
bottom left and right curves marks the lower envelope of
the changing rate of Po. We can clearly see that there are
two envelopes. For the positive values of dPo/dt, which
corresponds to the recovery phase of substorms, the enve-
lope is a straight line. While for the negative values of dPo/
dt, which corresponds to the active period (decrease of
pseudo AL index), the envelope is a curve. With the
increase of Pi, the maximum of (�dPo/dt) increases.
[39] Figure 11 shows the similar plot of dPo/dt versus Pi

obtained from the coupled vBs–observed AL index system
studied by Sitnov et al. [2001]. We can see that Figure 10
resembles Figure 11 in the sense that both of the plots show
similar envelopes. The curved envelopes in Figures 10 and 11

are of interest, since they are related closely to the input and
output parameter.
[40] Figures 12 and 13 show the log-log plots of the lower

(curved) envelopes in Figures 10 and 11, respectively. In
Figure 12, the two lines are of slopes 0.7 and 0.4, separately.
They correspond to the two curve in Figure 10, respectively.
While in Figure 13, the dash line is of slope 0.64. We can
see that the curved envelope derived from the coupled vBs–
observed AL index system (in Figure 11) obeys a power law
that spans four decades. The curved envelope derived from
the coupled vBs–pseudo AL index system (in Figure 10)
shows two slopes. When the parameter Pi is small (<1.0),
the curved envelope in Figure 10 scales with a power close
to that of the real system. When the parameter Pi is large
(>1.0), the curved envelope in Figure 10 scales with another
power smaller than that of the real system. With the increase
of the input vBs, the maximum changing rate of (�Po) does
not increase as fast as in the case derived from observations.
Our explanation is that in the global MHD model, which
has only an electrostatic model of the ionosphere and does
not have a ring current in the magnetosphere, the iono-
spheric activity can be underestimated with excessive input.

Figure 9. Log-log plots of SSA eigenvalues for observed AL or pseudo AL index and vBs parameters
alone as well as for the combined data in cases of the coupled vBs–pseudo AL index system derived from
global MHD model. t = 2 min, m = 40 in the case of combined data and m = 80 for input and output
parameters alone.
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[41] The global MHD simulation data reveal the curved
envelope relation between Pi andmax(�dPo/dt), as in the real
system. Pi and Po are closely related to input and output
parameter. The envelope of max(�dPo/dt) scales as Pi with
two envelopes. Therefore, to some degree, the global MHD
model reveals the multiscale behavior. Both the analysis of
the real system and that of the global MHD model show that

the magnetosphere resembles the conventional set of first and
second-order phase transition rather than SOC or catastrophe
model.

4. Conclusions

[42] In this paper, we use techniques of SSA to analyze
the coupled input–output system derived from the global
MHD simulations and compare the results to those from the
analysis of the observations by Sitnov et al. [2000, 2001].
The conclusions are listed as following:
1. The analysis of the coupled vBs–pseudo AL index

system derived from the global MHD simulations shows the
first-order phase transition map, which is consistent with the

Figure 12. Log-log plot of the lower envelope in Figure
10.

Figure 13. Log-log plot of the lower envelope in Figure 11.

Figure 11. Rate of the positive and negative changes of
the parameter Po as a function of Pi obtained from the
coupled vBs–obseved AL index system studied by Sitnov et
al. [2001].

Figure 10. Rate of the positive and negative changes of
the parameter Po as a function of Pi obtained from the
analysis of the global MHD model data. The bottom left and
right curves mark the lower envelope of the changing rate of
Po as a function of Pi.
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similar map obtained for the vBs–observed AL index
system of Sitnov et al. [2000, 2001]. The reconstructed
surface resembles the so-called temperature–pressure–
density diagram for the equilibrium first-order phase
transitions [e.g., Stanley, 1971]. Although, the comparison
between observation and individual global MHD simulation
may vary, the overall global transition pattern during the
substorm cycle revealed by SSA is consistent between
simulations and observations. The procedure of phase
transition analysis using SSA has revealed the qualitative
features of global configuration change both in the real
system and in the global MHD simulations.
2. The bifurcation/catastrophe picture is associated with

first-order dynamical phase transitions, while the deviations
from the ideal catastrophe picture may be explained by
second-order phase transitions near the critical point. The
coupled vBs–pseudo AL index system derived from global
MHD simulations shows multiscale behavior (scale-invar-
iant power law dependence) in singular power spectrum.
The pseudo AL index is much cleaner than the observed AL
index in the sense that its singular spectrum assumes more
steep slope (in log-log plot).
[43] The global MHD simulation data reveal the curved

envelope relation between Pi and max(�dPo/dt), as in the
real system. Pi and Po are closely related to the input and
output parameter, respectively. The envelope of max(�dPo/
dt) scales as Pi with two exponents. With the increase of the
input vBs, the maximum changing rate of (�Po) does not
increase as fast as in the case derived from observations. Our
explanation is that in the global MHDmodel, which has only
an electrostatic model of the ionosphere and does not have
ring current in the magnetosphere, the ionospheric activity
can be underestimated with excessive input. In any case, the
curved envelope relation between Pi and max(�dPo/dt) is
the essential feature which distinguish the second-order
phase transition model from the SOC model.
[44] We point out that the intervals used in this paper are

associated with medium activity substorms and are suitable
for benchmarking the global MHD simulations statistically.
Other intervals with strong activities have not been exam-
ined yet and will be examined.
[45] In summary, the global MHD simulation results are

shown to statistically reproduce both global coherent and
multiscale features of the substorm dynamics of the Earth’s
magnetosphere. Global MHD simulations are thus proven to
be an efficient instrument in modeling magnetosphere. On
the other hand, they can be used as a test bed of more
general studies of complexity in open systems.
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