
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. A6, PAGES 12,955-12,974, JUNE 1, 2000 

Phase transition-like behavior of the magnetosphere 
during substorms 

• D Vassiliadis 3 M. I. Sitnov, 1'2 A. S. Sharma, • K. Papadopoulos, . , 
J. A. Valdivia, 3'4 A. J. Klimas, • and D. N. Baker • 

Abstract. The behavior of substorms as sudden transitions of the magnetosphere 
is studied using the Bargatze et al. [1985] data set of the solar wind induced 
electric field vB• and the auroral electrojet index AL. The data set is divided 
into three subsets representing different levels of activity, and they are studied 
using the singular spectrum analysis. The points representing the evolution of 
the magnetosphere in the subspace of the eigenvectors corresponding to the three 
largest eigenvalues can be approximated by two-dimensional manifolds with a 
relative deviation of 10-20%. For the first two subsets corresponding to small and 
medium activity levels the manifolds have a pleated structure typical of the cusp 
catastrophe. The dynamics of the magnetosphere near these pleated structures 
resembles the hysteresis phenomenon typical of first-order phase transitions. The 
reconstructed manifold is similar to the "temperature-pressure-density" diagrams 
of equilibrium phase transitions. The singular spectra of vB•, AL, and combined 
data have the power law dependence typical of second-order phase transitions 
and self-organized criticality. The magnetosphere thus exhibits the signatures 
of both self-organization and self-organized criticality. It is concluded that the 
magnetospheric substorm is neither a pure catastrophe of the low-dimensional 
system nor a random set of avalanches of different scales described by the simple 
sandpile models. The substorms behave like nonequilibrium phase transitions, with 
features of both first- and second-order phase transitions. 

1. Introduction 

Earth's magnetosphere is an open system and geo- 
magnetic activity, consisting of storms and substorms, 
is its main response to the influence of the solar wind. 
The global coherence in the magnetospheric dynamics 
indicates that the magnetosphere is a dynamical sys- 
tem with low effective dimension [Sharma, 1995; Kli- 
mas et al., 1996]. However, obtaining its effective di- 
mension is not straightforward for a number of reasons. 
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The techniques of phase space reconstruction and di- 
mension estimation are developed for autonomous sys- 
tems in general [e.g., Abarband et al., 1993]. Although 
the application of these techniques to the auroral elec- 
trojet indices shows evidence that the magnetosphere 
is low-dimensional [Vassiliadis et al., 1990; $harma, 
1995], the results are not conclusive. The extension 
of these techniques to input-output systems [Casdagli, 
1992] is more appropriate for modeling the solar wind- 
magnetosphere system. The nonlinear filters relating 
the input (solar wind variables) to the output (AL in- 
dex) show that a relatively small number of magne- 
tospheric state variables dominate the dynamics [Vas- 
sillaris et al., 1995]. Moreover, the relatively small 
amount of geomagnetic and solar wind data required 
to make the best prediction indicates the nonlinearity 
of solar wind-magnetosphere coupling [Vassiliadis et al., 
1996]. 

It appears that the geomagnetic activity is neither a 
simple linear response to the changes of the solar wind 
conditions nor an output of the autonomous system. 
Rather, there are elements of self-organization [Haken, 
1975] in the geospace. The self-organization concept 
can be further elaborated along two main directions. 
The first one is the creation of specific nonlinear mod- 
els of geomagnetic activity based on physical processes. 
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One of the earliest examples of such an approach was 
the interpretation of the substorm as a thermal catas- 
tr0phe [Smith et al., 1986; Goertz and Smith, 1989]. 
The second direction is the reconstruction of the sys- 
tem dynamics directly from the data [Sharma, 1995]. 
Such approaches, namely, nonlinear filters [Vassiliadis 
et al., 1995] and neural networks [Gleisner and Lund- 
stedt, 1997; Wei9½l et al., 1999], have very good pre- 
diction ability and are potential tools for space weather 
forecasting. However, these approaches do not yield 
directly the physical processes involved. This has led 
to models such as the dripping faucet and Faraday 
loop anal. ogue models [Baker et al., 1990; Klimas et 
a•l., 1992], data-derived analogues based on transform- 
ing local-linear prediction models into dynamical sys- 
tems of equations [A'limas et al., 1997], and the low- 
dimensional magnetosphere-ionosphere coupling model 
[Horton and Doxas, 1996; Horton et al., 1998] including 
its further development in terms of the inverse bifurca- 
tion sequence [Horton et al., 1999]. In this work we ex- 
plore further the reconstruction of dynamics from time 
series data to study the nature of sudden transitions in 
the magn•etosphere during substorms. 

The self-organization often implies metastability of 
the system, namely, a collection of temporarily stable 
states, with some of them being related to the others 
by relatively quick transition processes such as bifurca- 
tions or catastrophes [Haken, 1975]. This is similar to 
the the loading-unloading scenario in the Earth's mag- 
netosphere during substorms. The metastability natu- 
rally implies the existence of low-dimensional manifolds, 
which the system is embedded in during the stable peri- 
ods. Such a manifold may, however, have a complicated 
pleated structure as the relationship between input and 
output variables may be not one-to-one [Casda91i, 1992]. 
Recent analysis of magnetospheric data using autore- 
gressive moving-average (ARMA) filters [Vassiliadis et 
al., 1995] has given evidence in favor of such a pleated 
structure of the dynamical manifold through its bet- 
ter prediction ability with the use of the previous out- 
put data. The successful long-term prediction based on 
ARMA filters suggests that phenomena like dynamical 
chaos may not dominate the response of the magneto- 
spher e to the solar wind input. Consequently, the ex- 
pected dynamical manifold may have no f¾actal features 
and reproduce the abrupt substorm changes as well as 
seemingly random nature of the substrom onset accord- 
ing to the classical scenario of critical points of smooth 
functions [ArnoI'd, 1975]. This scenario based on the 
catastrophe theory [Gilmore, 1993] is used in our study 
as a working hypothesis. 

2. Magnetospheric Substorm As a 
Catastrophe 

The theory of catastrophes describes abrupt changes 
in a system under slow changes of a control parameter. 
Mathematically, it is described by a class of differen- 

tim equations, the so-called gradient systems [Gucken- 
heimer and Holmes, 1983], 

dz OS (z, C) 
d-• = - chz ' (1) 

Catastrophes in such systems manifest as abrupt changes 
in the state variable z under slow variations of the ef- 

fective potential U because of changes in the control 
parameters C. For quasi-static states defined by 

ov c) = 0 
0z 

the catastrophe is usually connected with the change in 
the number of local minima of the effective potential 
U. The concept of catastrophes is closely related to bi- 
furcations, with the catastrophes considered as inverse 
bifurcations [Haken, 1975]. 

The nature of the catastrophe is determined by the 
number of control parameters and state variables in- 
volved. In particular, the simplest fold or A2 catastro- 
phe is represented by a transformation of the potential 

v (z, = z + 3cz (3) 

from the function with the local minima z•,2 = v/2c• 
(c• < 0) to a monotonous one (c• > 0) with the for- 
mation of the inflection point at c• = 0. This is illus- 
trated in Figure 1, where the transition from linear to 
nonlinear instability at the catastrophe is due to the 
change in the form of the effective potential. It is of- 
ten useful to distinguish between this genuine catastro- 
phe and the dynamical regime when the system is able 

U(z) 
___. Quasi-static formation 

of the inflection point 

'-- Triggering 
/ 

/ 
/ 

/////// 
Marginal stability •/ / 

Linear stability 
Z 

Figure 1. The effective potential evolution during 
the fold catastrophe (from solid to dashed line) and 
the corresponding dynamical regimes: delay convention 
regime, when the marginal stability should be reached 
(dashed arrow), and Maxwell convention regime, when 
the catastrophe starts because of the external trigger or 
noise (solid arrow). 
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to jump over the potential barrier before the inflection 
point is formed because of a small but finite amplitude 
of an external trigger or internal fluctuations (Figure 1). 
The corresponding limiting cases are known in catastro- 
phe theory as Delay and Maxwell conventions [Gilmore, 
1993]. In the substorm phenomenology they may be 
identified with spontaneous substorm onsets [Dmitrieva 
and Sergeev, 1983; Henderson et al., 1996] and those 
triggered by the solar wind [Caan et al., 1975; Sergeev 
et al., 1996a], respectively. 

The model of substorms as a fold catastrophe was 
proposed by Smith et al. [1986] and Goertz and Smith 
[1989] on the basis of the resonant absorption of Alfven 
waves in the plasma sheet boundary layer. On simi- 
lar lines a model of explosive ballooning instability has 
been recently proposed for substorms, solar flares and 
tokamak disruptions by Cowley and Artun [1997] and 
Hurricane et al. [1998] on the basis of the detonation 
concept. In connection with the most natural process of 
the energy release during substorms, namely, the spon- 
taneous reconnection in the tail current sheet, the first 
catastrophe model was in fact formulated by Galeev and 
Zelenyi [1976]. According to their model the energy of 
the appropriate eigenmode (tearing mode) may be pos- 
itive because of the stabilizing influence of trapped elec- 
trons, which corresponds to the positive curvature of the 
effective potential in Figure I near the local minimum. 
As a result, the tearing mode becomes stable in the 
presence of any dissipation. On the other hand, there 
are gaps in the parameter space of the system where the 
sign of the energy of the tearing mode changes. This 
corresponds to the change of the sign of the curvature 
of the potential energy curve in Figure I after the for- 
mation of the inflection point and results in the loss of 
stability under finite dissipation. This interesting model 

of a metastable tail current sheet has not received the 

attention it deserves mainly because of its more rigorous 
results [Lembege and Pellat, 1982; Pellat et al., 1991], 
which leave no room for the instability gaps. Recently, 
however, Sitnov et al. [1998; 1999] have shown that 
the sufficient stability condition of the tearing mode is 
not as restrictive as was suggested by Lembege and Pel- 
lat [1982] and the marginal stability may be reached 
through the shielding effect of transient electrons under 
the small electron-to-ion temperature ratio. 

The fold catastrophe alone cannot explain the whole 
sequence of substorm dynamics because the potential 
(3) does not include the recovery of the system after the 
catastrophe. Goertz and Smith [1989] recognized that 
the system should evolve back toward its initial state 
along different phase diagrams than those describing the 
original (direct) catastrophe. The recovery phase can be 
described by introducing a second control parameter in 
the scheme of substorms as a cusp or Aa catastrophe 
as proposed by Lewis [1991]. The main features of this 
scenario are represented by the potential 

U (z, c1, c2)- 2; 4 n t- 2ClZ 2 + 4c2z, (4) 

with two control parameters C1 and c2. The state pa- 
rameter in this model is the nightside magnetic field ori- 
entation, while the control parameters are Cl = -(open) 
flux + const and c2 = (nightside- dayside) (reconnec- 
tion rate). The potential (4) may have either one mini- 
mum corresponding to one equilibrium state of the sys- 
tem or two minima corresponding to different equilib- 
rium states. The onset of the substorm is represented 
as a disappearance of the upper minimum due to a local 
fold catastrophe. The condition (2) for the potential (4) 
looks like a folded surface in the three-dimensional space 
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Figure 2. The cusp catastrophe manifold (2) for substorms as interpreted by Lewis [1991]. The 
evolution of an isolated substorm is shown by dashed arrows. 
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(Cl, C2, Z) Figure 2, and all the dynamical states avail- 
able to the magnetosphere are supposed to lie on this 
surface. Figure 2 also shows a typical substorm cycle in- 
cluding growth, onset, and recovery phases as suggested 
by Lewis [1991]. Since the transition to catastrophe de- 
pends on more than one variable, it becomes possible 
to explain the variability in the energy release during 
individual substorms and, in particular, the difference 
between pseudobreakups and conventional substorms. 

The catastrophe model for substorms will, however, 
remain only an interesting qualitative hypothesis unless 
either the specific physical processes responsible for the 
catastrophic behavior are revealed or the manifold that 
has the fold structure is derived from the observational 

data. In this paper we address the second issue by us- 
ing the techniques of phase space reconstruction from 
observational data. This effort is aimed at developing a 
framework for a global description of substorm dynam- 
ics. 

3. Singular Spectrum Analysis of the 
vB, - AL Data 

We use the database of Bawatze et al. [1985] (here- 
after referred to as BBMH) containing 34 intervals of 
correlated measurements of the auroral electrojet index 
AL, the solar wind bulk speed v, and the southward 
component of the magnetic field Bs (B• =-Bz for 
Bz < 0 and Bs = 0 for Bz > 0, where the interplan- 
etary magnetic field is expressed in GSM coordinates), 
each 1-2 days in length. The database is separated into 
three subsets (1-15, 16-26, and 27-34), each containing 
approximately the same number of points (,-• 13,000) 
and representing different levels of activity. BBMH have 
shown the qualitaively different behavior of the magne- 
tosphere associated with directly driven and loading- 
unloading parts of the response for low, medium, and 
high activity levels estimated on the basis of the median 
values of the AL index. While some of the subsequent 
studies on bimodal filters [Blanchard and McPherron, 
1993] did not reveal a consistent dependence on the level 
of activity in the magnetosphere, other studies [Smith 
and Horton, 1998] have also found such a dependence. 
This difference in the results is explained by Smith and 
Horton [1998] as due to the difference of the data sets 
used in the above studies and, in particular, the use of 
isolated substorm data in the study of Blanchard and 
McPher•vn [1993]. The inference about the dependence 
of the magnetospheric response upon the activity level 
has been substantiated very recently by Weigel ½t al. 
[1999]. They have shown in particular that the use of 
the gated neural network, where the BBMH data set 
is explicitly divided into three intervals (1-10, ll-20, 
21-32), results in a much better performance of the net- 
work, as compared to its original version [Hemandes et 
al., 1993], especially for strong substorms. 

To reconstruct the manifold on which the trajectory 
of substorm dynamics lies, we use a modification of the 

singular spectrum analysis (SSA) [B•vomhead and King, 
1986] to include both input and output time series. The 
input is the product vB,. This variable is a measure of 
the solar wind induced electric field and the reconnec- 

tion rate near the Earth's magnetopause. The output 
variable is the auroral electrojet index AL. The trajec- 
tory matrix describing the dynamics of the solar wind- 
magnetosphere system can be constructed from AL and 
vS s as 

AAL (tl).. AL(tl - (m-1)r) -vB•(tl) ..-vB•(tl - (m-1)r)] 

A L (tN- im -1)r ) -- vBs(tN). . -- vBs (tN-- (m --1)r )J 

where the typical value of the dimension m of the em- 
bedding space is 32 and that of the time delay r is 2.5 
min. The matrix Y, constructed using the time delay 
embedding technique [Abarbanel et al., 1993; $harma, 
1995], contains information about variables other than 
the original ones and can provide a complete description 
of the system. To make input and output parameters 
more homogeneous, they are normalized separately by 
the corresponding standard deviations. The matrix Y 
can be represented in the form 

Y- uwv (6) 
using singular value decomposition (SVD) [Press et al., 
1992]. Here U is an N x 2m matrix; W is a 2m x 2m 
diagonal matrix; and V is a 2m x 2m orthogonal ma- 
trix. W contains the SSA eigenvalues, while V and U 
determine the SSA eigenvectors and the projections of 
the original trajectory matrix along those eigenvectors 
Pi • Uiwi -- (YV)i, respectively. 

In the ideal case this decomposition would reveal the 
nurnber of linearly independent vectors that can be con- 
structed from the trajectory in the embedding space 
[B•vomhead and King, 1986]. For real noisy systems 
it allows for (1) estimation of the effective number of 
variables describing the essential dynamical behavior of 
the system by selecting diagonal elements wi consider- 
ably above the others, which form the noise floor, (2) 
determination of the corresponding directions in 2m di- 
mensional space and projection of the data along them, 
thus making it possible to effectively reduce the noise 
and observe the corresponding attractor (if it exists) in 
the embedding space. The formal problem of finding 
dynamical correlations in the data array Y is equiva- 
lent to the eigenvalue problem for the N x N structure 
matrix yyT which in turn is reduced to the problem of 
finding 2m eigenvectors w• of the 2m x 2m covariance 
matrix YTY. SSA may be considered as a modifica- 
tion of Fourier or wavelet analyses because of its data- 
derived basic functions [Preisendo•fer, 1988; Danilov 
and $olntsev, 1997]. 

In the analysis of the output data alone, namely, the 
AL index [Sharma, 1993; $harma et al., 1993], the study 
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of the correlation integral based on this technique yields 
an estimate of the effective (embedding) dimension of 
the magnetosphere as an autonomous system. However, 
the magnetosphere is a driven system and representing 
it as an autonomous system has limitations. This may 
explain the variance of these results with those of non- 
linear filters [Vassiliadis et al., 1995]. It is expected 
that the use of both input and output time series in 
SSA will help not only in estimating the effective num- 
ber of degrees of freedom of the magnetosphere but also 
in revealing the essential input-output relationships. 

3. 1. Singular Spectrum, Effective Dimension, 
and Original Eigenvectors 

The singular spectra of the three subsets of BBMH 
data are computed for time delays r - 2.5,5.0, and 
7.5 min and for embedding dimension m - 16, 32, and 

48. The total delay values (= mr in these cases) are 
in the range 40-120 min and in most cases cover the 
whole loading-unloading timescale range for substorms 
(20-60 min). The eigenvalues for the case m = 32 and 
r = 2.5, 5.0, and 7.5 min are shown in Figure 3a. Fig- 
ure 3b shows the eigenvalues for r = 2.5 and m = 16, 
32, and 48. These spectra show no clear noise floor for 
small values m, but this should not be interpreted as 
an indication of a large effective dimension of the sys- 
tem because SSA itself is a linear technique and cannot 
be directly used for dimension assessment [Gibson et 
al., 1992]. Figure 3 still shows that the two or three 
leading eigenvalues actually dominate over the others. 
This shows that the study of the system in the reduced 
phase space created by the leading eigenvectors would 
allow us to reduce effectively the noise and reveal the 
essential dynamical features of the system. 
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Figure 3. Singular spectrum (eigenvalues w (i), i= 1, .., 2m)in case of the first Bargatze et al. 
[1985] (hereafter referred to as BBMH) subset for different values of the time delay unit r (in 
minutes) (a) at a constant number of delays m = 32 (left) and (b) for different delay numbers at 
constant r = 2.5 min. The results of assessing the fractal dimension of the first BBMH subset as 
a function D (N p) of box partition Np along each of m directions in m-dimensional embedding 
space for (c) different embedding dimensions m = 1- 4 and (d) different numbers N of the 
trajectory points. 
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This suggestion is confirmed by the results of a direct 
assessment of the fractal dimension of the system tra- 
jectory. The coast-line dimension of the trajectory set 
in the embedding space [Abarbanel et al., 1993] is given 
by 

D! • D(Np) -log (Nt)/log(Np), (7) 

where Np is the number of partitions of the three- 
dimensional cube embedding the trajectory along each 
principal component Pi and Nt is the number of cubes 
created because of this partitioning and containing at 
least one point of the trajectory. Figure 3c shows typi- 
cal signatures of the finite dimension; namely, it shows 
that the dimension is close to the embedding dimen- 
sion till m- 3 and then it remains close to D! - 2 
in spite of further increase of m. This implies that the 
trajectory lies on a two-dimensonal manifold (surface) 
embedded into a three-dimensional subspace. The ef- 
fect of increasing the total number of points used to 
verify the dimension estimate in the case of m - 3 is 
shown in Figure 3d. Figure 3d shows that the above es- 
timate of the dimension is sustained only for the largest 
scales (Np < N. ,,• 20). The issue of increasing the 
total number of points necessary to obtain a reliable 
effective (correlation) dimension has been noted earlier 
[Roberts, 1991] in the computation of the correlation di- 
mension of the AL index without taking into account 
spurious autocorrelation effects. Using the SSA and 
taking into account the autocorrelation effect yield an 
upper bound of this dimension D <_ Dc -', 2.5 with 
the embedding dimension m -., 4- 5 [Sharma et al., 
1993]. While the actual dimension associated with sub- 
storm is still a subject of debate [Sharma, 1995; Klimas 
et al., 1996], the above assessment using the coast-line 
method seems to be quite sufficient for the reconstruc- 
tion of magnetospheric dynamics. The reconstruction 
is achieved by projecting the original trajectory matrix 
onto the subspace created by the main SSA eigenvectors 
and approximating that projection by a smooth mani- 
fold (line, surface, etc.). Taking into account the above 
results, we limit ourselves to three main eigenvectors 
(corresponding to m - 3) and approximate the data 
set in this three-dimensional space by a two-dimensional 
suface (corresponding to D! - 2). 

The original eigenvectors corresponding to the three 
largest eigenvalues are shown in Figure 4, where shad- 
ing corresponds to the output (AL) and black to the 
input (vBs). On the basis of Figure 4 the first and sec- 
ond eigenvectors may be interpreted as directly driven 
and loading-unloading components of the activity, re- 
spectively, with the loading scale At •-.1 hour (-., 30r) 
being found the same regardless of r and m. Similar 
conclusions concerning the first two eigenvectors were 
reached recently by Sun et al. [1998] in their study of 
the map of the equivalent current system on the ba- 
sis of the International Magnetospheric Study (IMS) 
database [Kamide et al., 1982]. They used a modi- 
fication of the SSA technique and identified the map 

projections given by the first and second SSA eigenvec- 
tors with the well-known idealized current systems DP2 
and DP1, respectively. 

3. 2. Rotated Eigenvectors 

The principal SSA components shown in Figure 4 rep- 
resent the leading features of substorm dynamics. Each 
eigenvector is composed of the output and input com- 
ponents and thus there are six variables, making it dif- 
ficult to visualize the manifold. Most surface plotting 
routines need also some basic plane (x, y) to plot the 
surface as the single-valued function z = F(x, y). Such 
simple plotting might give us completely improper re- 
sults in the case of a folded surface. For instance, the 
plane (c•, z) is suitable as a basic plane for plotting 
the surface drawn in Figure 2, while the original plane 
(c•, c2) is not. To resolve this problem as well as to 
facilitate further interpretation of the results we rotate 
the eigenvectors as 

.-• V•cosa + V2sina •, fV2-• V2cos/• + Vasin/• } -> -V•sina +V2cosaj © I, va -> -v2 sin/? + Va cos/? 
(s) 

and then perform the inversions in three-dimensional 
space of the original eigenvectors shown in Figure 4. 
The goal of each rotation is to minimize or maximize 
the ratio between the output (j = 1- 32) and in- 
put (j = aa- 64) parts of each eigenvector so that 
the resultant variables approach either the control or 
state parameter of some catastrophe model. Taking 
into account the close resemblance between the SSA 

and the conventional Fourier transforms, we used dif- 
ferent measures of the eigenvector parts for the first 
and second rotations. When adjusting the first ro- 
tation, we tried to minimize/maximize the appropri- 

ate averaged components I y•'.=• ¬ (j)/ 64 
while during the second rotation, the first harmonic 

- Y]-=aa (k - 48.5) 't• (k) I s•- 
lected for the same purpose. The adjustments are 
achieved through trial and error and led to the following 
transformations. For the first BBMH subset, a = 0.785 
and • = 0.25; for the second BBMH subset, a = 0.785 
and • = -0.20 with an inversion of the new vector Va; 
and for the third BBMH subset a = -0.785 with a ro- 

tation of Va and the new vector V2, and • = 0.25. The 
resulting basis vectors are shown in Figure 5 (we shall 
use the term "basis vectors" instead of "eigenvectors" 
because the above transformations can destroy the di- 
agonal form of the original matrix W in (6) in the three- 
dimensional subspace of the main eigenvectors). From 
the variables in Figure 5 it is clear that the output (AL) 
contribution is dominant in the second vector (Figures 
5b, 5e, and 5h), while the other two (Figures 5a, 5d, 
and 5g and Figures 5c, 5f, and 5i) are related mainly to 
the input component. 

The principal components Pi = (YV)i conjugated to 
the main basis vectors Vi turn out to be surprisingly 
close to the control and state parameters in the scheme 
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with r = 2.5 min and m = 32. The AL and vB• parts of the eigenvectors corresponding to the 
structure of the trajectory matrix (5) are shown by shading and black filling, respectively. 

of the substorm as a catastrophe [Lewis, 1991]. In par- 
ticular, the first principal component Pz corresponding 
to the basis vector V z (Figures 5a, 5d, and 5g) is formed 
by integrating the parameter -vBs in time over the pe- 

riod of about an hour, a typical loading timescale asso- 
ciated with the energy input in the magnetosphere due 
to the dayside reconnection during the growth phase. 
Therefore, taking into account the conventional inter- 
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Figure 5. The three main eigenvectors from Figure 4 after rotation and inversion. 

pretation of the parameter vB• as a measure of the 
inductive (reconnection) electric field near the dayside 
magnetopause, P• is analogous to the control parameter 
c• = -(open) flux + const. The relatively limited (,-• 1 
hour) period of integration necessary to produce this 
principal component from vB• implies that the recon- 
nection rate due to the dayside merging should be large 

enough to overcome the plasma sheet convection, which 
returns the magnetic flux back to the magnetosphere, 
and this limits from above the possible duration of the 
growth phase. The third principal component Pa cor- 
responding to the basis vector Va (Figure 5c, 5f, and 
5i) reflects the difference between the nearly immedi- 
ate (with the time delay <,-• 20 rain) value of vB• and 
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its earlier values (time delay around one hour). The 
second principal component P2 produced by the basis 
vector V2 (Figures 5b, 5e, and 5h) apparently repre- 
sents mainly the time-integrated AL index (with the 
inversion of sign). 

In fact, neither control parameter in the Lewis [1991] 
scheme can be directly connected with the SSA parame- 
ters because neither the nightside reconnection rate nor 
the plasma sheet convection rate are explicitly involved 
in the analysis. These control parameters can be ef- 
fectively represented, nevertheless, by the appropriate 
SSA principal components. In particular, the parame- 
ter P3 can mimic the control parameter because of the 
time delay between the first (negative) bay in Figures 
5c, 5f, and 5i and the second (positive) one, which is 
comparable with the time of signal propagation from 
the magnetopause to the distant tail. As a result., the 
first bay reflects the dayside reconnection rate (nearly 
immediate values of vB•), while the second bay takes 
effectively into account the contribution of the night- 
side reconnection because of its opposite sign and the 
appropriate delay (past values of vB• affect the night- 
side reconnection). In the parameter P• the nightside 
reconnection is also implicitly taken into account by de- 
creasing the envelope of its output part. Finally, in spite 
of the fact that the state parameter z in the scheme 
of Lewis [1991] (nightside magnetic field orientation) is 
rather uncertain and while the auroral zone geomag- 

netic index AL is not the best measure of the substorm 

activity, both z (if measured in the near-Earth tail) and 
P2 (integrated -AL) characterize the state of the mag- 
netosphere during substorms. 

4. Phase Transition-Like Behavior 

During Substorms 
4. 1. Principal Components for the First 
BBMH Snbset 

For the first BBMH subset the evolution of the mag- 
netosphere as a dynamical system in the subspace of 
three main eigenvectors as well as its approximation by 
the smooth two-dimensional manifold (taking into ac- 
count the rotations and inversions described in the pre- 
vious subsection) are reflected in Figure 6 and Plates 1-3. 
Figures 6a-6c represent, in particular, the two-dimen- 
sional projections of the magnetosphere's trajectory to 
planes P•- P3 of the principal components, correspond- 
ing to the rotated and inverted eigenvectors V•- V3 
from Figure 5. The analysis of the projections yields the 
following picture of the substorm cycle in terms of these 
principal components. The growth phase of the sub- 
storm corresponds to the growth of the absolute value 
of the parameter P! (accumulation of the magnetic flux) 
from the nearly zero level at constant and close to zero 
parameter P2 (no activity reflected by AL). The ex- 

o b 

•" _ !2 
-12-10 -8 ;5 -4 -2 O 

............... c.' ............ 

0 2 4p26 8 10 " 
Figure 6. (a)-(c) One-dimensional and (d) two-dimensional approximations of the first BBMH 
subset in three-dimensional space. 
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plosive phase corresponds to the growth of P2 (start of 
activity in the form of AL decrease) associated usually 
with the decrease of the component Pa down to neg- 
ative values (northward turning of the interplanetary 
magnetic field) under approximately constant P• (sat- 
urated magnetic flux). This effect is well known as a 
possible prerequisite of substorms [Caan et al., 1975; 
Rostoker, 1983] either because of the reduction in the 
magnetospheric convection [Lyons, 1995] or the addi- 
tional intensification of the tail current [Alexeev and 
Bobrovnikov, 1997]. Moreover, it can be directly ob- 
served in some of the BBMH database analyzed here, 
namely, intervals 1, 2, 7, 9, and 12-17. The recovery 
phase (which can hardly be separated from the sub- 
sequent growth phase) corresponds to the restoration 
(growth) of the parameters P1, -P2 and Pa to zero lev- 
els. 

The surface shown in Figure 6d is obtained by a tri- 
angulation of the tarjectory set on the plane (P•, P2). 
This procedure allows one to resolve the problem of 
the irregular distribution of the points on this plane. 
For each point i • (P•,P2) of the regular grid there 

/D(J) i•(J)), where j - 1 2 3 is only one triangle [,'•(i), • 2(i) , , , 
created by projections of the original data points in 
which the point i is embedded. Then the third co- 
ordinate of the point i may be determined using the 
linear interpolation (by a plane surface) of the triangle 

D(J) P(J) i•(J)) in three-dimensional space The im- ' •(i), • 2(i), • a(i) ß 
portant distinctive feature of the surface in Figure 6d 
is the valley in its left part, which is analogous to the 
upper part of the fold structure in Figure 2. It is ap- 
parently formed because in some substorm cycles, the 
dayside reconnection rate turns out to be large again at 
the end of the expansion phase, although this new por- 
tion of the incoming magnetic flux cannot substantially 
affect the activity (P2 •- const) because of the different 
(low) global energy state of the magnetosphere after 
the onset. A representative of such dynamical behav- 
ior of the magnetosphere may be the convection bay 
[Pytte et al., 1978; Scrgcev et al., 1996b] following a 
typical substorm (V. A. Sergeev, private communica- 
tion, 1999). In the physics of nonequilibrium first-order 
phase transitions this phenomenon is well known as hys- 
teresis [Brokat½ and Sprekels, 1996], and the valley left 
from the central peak in Figure 6d corresponds to the 
state of a superheated liquid in the case of liquid-gas 
transition [Landau and Lifshitz, 1974]. 

Plate l a represents the color contour plot analogue of 
the surface plot of Figure 6d, and the valley mentioned 
above corresponds to the green-blue region to the left 
of the central red spot. If this valley region actually de- 
scribes the local fold catastrophe within the cusp catas- 
trophe picture suggested by Lewis [1991], it should be 
also the region of the fastest (catastrophic) changes of 
the state parameter of the system, represented in our 
case by the parameter P2 (integrated AL index). This 
is confirmed by Plate lb, where the parameter dP2/dt 

is color-coded on the same plane (P2,-P•) as in Plate 
la. 

The results of estimating the errors due to the ap- 
proximation of the original set of points in three-dimen- 
sional space by the smooth surface shown in Figure 6d 
and Plate la are shown in Plate lc. The deviation (r 

of each original data point i from the smooth surface is 
estimated as 

Pa(i) - (1/4) E Fa(,) ] 
(r - , (9) 

P3 max - P3 min 

•(k) 
where 1-%(i ) is the Taylor expansion of the smooth ap- 
proximation p(s) (p•, P2) in Figure 6d at (P•(•), P2(•)) 
relative to each of the four points (P• (k), P2(•)) forming 
the regular grid cell that contains the point (P•(i), P2(i))' 

--_-(•) 
Pa(i) p(s) (p•(k), p2(k)) 

+ (P•(i)- P•(•)) øP(S) •-/5• IP• (•),P•(•) 

q-(P2(i)- P2 ©) cOP(S) OP2 IP• (k),p2 (•) 
.(10) 

P3max and P3min are the maximum and minimum val- 
ues of the principal component Pa over the whole trajec- 
tory set, respectively. According to Plate lc the relative 
error in the valley region is not the largest one, and it 
does not exceed 10%. The relative deviation of the ac- 

tual data from the approximately two-dimensional sur- 
face is rather small (~ 10- 20%) nearly everywhere in 
the plane (P2,-P1). The only exceptions seen on the 
right of the pleat feature are produced largely because of 
the very steep profile of the pleat (see, e.g., Figure 6d) 
where the expansion (10) is hardly valid. 

The averaged evolution of the magnetosphere on or 
near the reconstructed surface is shown in Plates 2 and 

3. In particular, Plate 2 is an analogue of Plate la with 
the vector field of "velocities" constructed from dP2/dt 
and -dP•/dt shown by the arrows. The prototype of 
this data-derived flow picture is the typical substorm 
cycle suggested by Lewis [1991] and is drawn by dashed 
arrows in Figure 2. It is clearly seen from Plate 2 that 
the trajectories entering the pleated region (red spot 
in the center) reveal the hysteresis phenomenon during 
which at the same input parameters, P• and P•, the 
system can be in different states P2 depending on its 
history. This phenomenon, while being very interesting 
in itself, strongly complicates the plotting of the approx- 
imate manifold on the plane (P•, Pa). Fortunately, the 
specific substorm activations responsible for this phe- 
nomenon are rather sparse (otherwise, there would be a 
ridge instead of the single peak in Figure 6d and Plates 
la and 2), and the corresponding activity intervals in 
the original data may be accurately detected and de- 
liberately excluded from the data set (since the begin- 
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Figure 7. Log-Log plots of SSA eigenvalues for AL and vBs parameters alone as well as for the 
combined data in cases of the (a.) first, (b) second, and (c) third BBMH subsets; •- - 2.5 min, 
m - 32 in case of combined data, and m - 64 for input and output parameters alone. 

ning and the end of each such interval corresponds to 
zero or small activity as well as solar wind input, this 
operation does not change the whole structure of the 
BBMH data set). As a result, we obtain the pleated 
manifold shown in Plate 3. This manifold as well as 

the averaged dynamical picture of the actual substorm 
activity, with the velocity field (dP3/dt,-dP•/dt) su- 
perimposed, are again very similar to the original pic- 
ture suggested by Lewis [1991] and shown in Figure 2. 
In particular, the counterclockwise circulation of the 
flow in Plate 3 corresponds to the similar circulation 
of the substorm prototype from Figure 2 when pro- 

jected on the plane (-c2,-c•). The manifold resem- 
bles also the "temperature-pressure-density" diagrams 
well known in the physics of conventional equilibrium 
phase transitions [Stanley, 1971]. The transition asso- 
ciated with the substorm onset takes place between the 
regions of relatively high (close to zero) and low (more 
negative) values of the parameter-P2 coded by red 
and green-blue colors, respectively. These regions cor- 
respond to high and low levels of the effective potential 
energy of the magnetosphere and, inversely, to low and 
high levels of its dynamical activity (analogue of the ki- 
netic energy) reflected by the local value of the param- 
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eter -AL. The yellow nearly vertical band separating 
green-blue and red regions (the remainder of the yel- 
low region, which surrounds the red and green-blue do- 
mains, contains no data) corresponds to the first-order 
phase transition curve, and it is the upper part of this 
bridge-like feature that reflects a typical substorm onset 
phenomenon. The suddenness of the activity changes in 
Plate 3 may be assessed by the speed of the color change 
along the arrow multiplied by the length of the arrow 
itself. One can see, in particular, that this parameter is 
much larger near the upper edge of the yellow bridge- 
like band corresponding to the well-developed onsets as 
compared to the same parameter taken at its lower edge 
and corresponding to the small activations close to the 
ground state of the magnetosphere (Figure 2). 

If we develop further the analogy with phase transi- 
tions, then the region at the lower center part of Plate 
3 (close to the lower edge of the yellow band mentioned 
above) should correspond to the critical point with the 
scale invariant behavior. Such a behavior is actually 
revealed in the substorm activity data in the form of 
various power law spectra [Tsurutan•, 1990; Takalo ½t 
al., 1993; Lui, 1998] and can be interpreted in terms of 
self-organized criticality, a dynamical analogue of the 
second-order phase transitions [Chapman ½t al., 1998; 
Consolini, 1998; Lui, 1998]. Moreover, as it is shown in 
Figure 7a, the singular spectra of AL and vB, and the 
combined data also demonstrate similar power law de- 
pendence (SSA in this case is very close to conventional 
Fourier expansions). The case of AL- vB, combined 
is, in fact, the analogue of the left sequence of points 
from Figure 3a made in log-log format. We discuss these 
analogies in more detail in sections 4.2 and 5.2. 

4. 2. Second and Third BBMH Subsets 

The analogues of Plates 2 and 3 and Figure 7a for 
the second and third BBMH subsets are presented in 
Plates 4-7 and Figures 7b and 7c. In particular, Plate 
4 shows that the valley region associated with the lo- 
cal fold catastrophe and the whole cusp structure is 
well defined and even more impressive in the case of 
medium activity than in the case of low activity. On 
the contrary, Plate 6, corresponding to the case of high 
activity reveals no considerable hysteresis signatures. 
At the same time a comparison of Plates 3, 5, and 7 
reveals a rather gradual disappearance of the pleated 
structure of the two-dimensional manifold in the form 

of the temperature-pressure-density diagram (with ex- 
cluded hysteresis loops) with increasing activity level. 
The almost complete diappearance of the pleat signa- 
tures in the case of the third BBMH subset may be 
naturally explained by the Maxwell dynamical regime 
of the magnetosphere's transition to a low energy state 
when the system (magnetosphere) may overcome the 
potential barrier before the formation of the inflection 
point and, as a result, the pleated landscape of the cusp 
catastrophe manifold may disappear because of the re- 
duction of the upper part of the fold in Figure 2. 

It should be emphasized that apart from the dis- 
appearance of some signatures of the first-order phase 
transitions for the second and third BBMH subsets the 

whole dynamical picture including other phase transi- 
tion aspects remains qualitatively the same notwith- 
standing the increase of the activity level. This is seen 
from a comparison of the appropriate SSA eigenvalues 
(Figure 7), eigenvectors (Figures 4 and 5), and clock- 
wise (Plates 2, 4, and 6) and counterclockwise (Plates 
3, 5, and 7) circulation flows and concerns, first of all, 
the scale invariant behavior shown in Figure 7, which 
is the primary distinctive feature of second-order phase 
transition and self-organized criticality. 

5. Discussion and Conclusion 

The technique of phase space reconstruction from 
the observational data, in particular, singular spectrum 
analysis, has been used to analyze the substorm data set 
of BBMH. The analysis has led to the following conclu- 
sions. 

1. The low effective dimension of the magnetosphere 
as a dynamical system on the largest substorm scales 
was confirmed and its dynamic trajectory lies on a two- 
dimensional surface in the three-dimensional space of 
the main SSA eigenvectors. 

2. The main eigenvectors corresponding to the three 
largest SSA eigenvalues used to obtain the appropriate 
basis vectors by rotation and inversion can be inter- 
preted in terms of of the specific control and state pa- 
rameters of the cusp catastrophe model of the substorm 
activity [Lewis, 1991]. 

3. The two-dimensional surface approximating the 
trajectories of the magnetosphere in the correspond- 
in• three-dimensional embedding space resembles the 
pleated surface typical of a cusp catastrophe. The com- 
plementary circulation flows (velocity fields) also agree 
with the cusp catastrophe model. 

4. Hysteresis phenomena typical for the catastrophe 
evolution and the first order phase transitions are shown 
for the first and second subsets of the BBMH data set. 

5. There is a close resemblance between the two- 

dimensional surface with excluded hysteresis intervals 
and the temperature-pressure-density diagrams of the 
conventional equilibrium phase transitions. 

6. The singular spectrum of the input (vBs), output 
(AL), and combined data obeys the power laws typical 
for the second-order phase transitions near the critical 
point and the self-organized criticality. 

5. 1. Is the Substorm a Catastrophe? 

The features of substorms, listed above, support the 
scenario suggested by Lewis [1991] on the basis of the 
theory of catastrophes. At the same time the devia- 
tions from the ideal catastrophe model are also essential 
and meaningful. It is worth noting here that the catas- 
trophes and the critical behavior may be considered 
as different aspects of the same physical phenomenon, 



SITNOV ET AL.: SUBSTORM AS A PHASE TRANSITION 12,971 

namely, phase transitions [Landau, 1937; Devonshzre, 
1954; Thom, 1972; O'Shea, 1977; Haken, 1983; Gilmore, 
1993; Jensen, 1998]. The absence of convincing evi- 
dences of low effective dimension on smaller scales as 

well as the power law form of the entire SSA spectrum 
suggests that the structure of the manifold in the vicin- 
ity of the cusp point is more complicated than is de- 
scribed by the theory of catastrophes and, in particular• 
by the Lewis [1991] model. On the other hand, the sim- 
plest catastrophe scenario with the quasi-static loading 
of the system turns out to be considerably modified by 
the increase of activity due to either a high level of inter- 
nal fluctuations in the magnetosphere or the triggered 
nature of many substorms [Uaan et al., 1975]. The sys- 
tematic influence of these effects resulting in the disap- 
pearance of the pleated structure of the manifold due 
to the "underbarrier" transitions shown in Figure I can 
be inferred, in particular, from comparison of Plates 2, 
4, and 6 and Plates 3, 5, and 7. These effects and those 
near the cusp point are detected above the SSA noise 
floor and cannot therefore be ignored in future models 
of the substorm activity. 

One of the main physical inferences of our analysis 
is that there should exist a global instability responsi- 
ble for isolated substorm onsets, which looks like the 
genuine fold catastrophe under the Delay convention 
dynamical regime and which is reflected by the pleated 
structure of the substorm dynamics manifold in the case 
of small and medium activity cases. Such a global sub- 
storm instability has been suggested by Baker et al. 
[1998] on the basis of observational and theoretical con- 
siderations. This is a nonclassical nonlinear instability 
[Sitnov et al., 1997; Chang, 1998; Sitnov and $harma, 
1998, Hurricane et al., 1998] in the sense that the cor- 
responding plasma physical model can be neither that 
of the linear instability nor that of the finite amplitude 
instability and the marginal linear stability should be 
reached prior to substorm. In the case of finite am- 
plitude instability the fold structures in the Maxwell 
convention dynamical regime are expected to be fuzzy, 
more typical of the high activity case. 

5. 2. Is the Magnetosphere a Sandpile or a 
Dripping Faucet ? 

During the past decade a new interesting concept of 
the self-organized criticality (SOC) based on the simple 
model of a sandpile [Baket al., 1987] has been used 
widely in the interpretation of catastropic processes in 
open spatially extended systems. Briefly, a system is 
in a state of SOC when the statistics of the energy re- 
lease events (avalanches) reveal no characteristic length 
or timescale and, as a result, the appropriate spectra 
obey power laws. Contrary to conventional second- 
order phase transitions near the critical point, which 
also exhibit scale invariant behavior [Willson, 1983], 
SOC was shown to be robust and to arise spontaneously 
without the tuning of system parameters. The SOC 
concept has been used for the explanation of substorm 

activity [Chang, 1992, 1998; Lug, 1998; Consolini, 1997; 
Chapman et al., 1998] on the basis of the observation 
that some spectra obey power laws [Tsurutani et al., 
1990; Takalo et al., 1993; Ohtani et al., 1995, 1998; Lui, 
1998]. The phenomenological picture of this multiscale 
aspect of the substorm activity has been described in 
detail in the review of Sergeev et al. [1996a]. 

It turns out, however, that the dynamics of open and 
spatially extended systems including sandpiles them- 
selves contain features that are not described by the 
conventional SOC models. For instance, real sandpiles 
may behave in a manner more reminiscent of a first- 
order transition (similar t,o the ordinary fold catastro- 
phe) than a second order one [Nagel, 1992]. In the case 
of substorms, explicit violations of the SOC behavior 
are present in the form of the statistics of chorus events 
seen at the ground and particle injections in the near- 
Earth magnetosphere [Borovsky et al., 1993; Pritchard 
et al., 1996; Smith et al., 1996]. In particular, the inten- 
sity and occurence rate of substorms have a probability 
distribution with a well-defined mean. These results are 
consistent with the earlier and more recent results on 

the assessment of the effective dimension of the mag- 
netosphere [Klimas et al., 1996] and the efficient pre- 
diction of the substorm activity on the basis of the lo- 
cal linear autoregressive filters [Vassiliadis et a'l., 1995], 
which are summarized in the form of the concepts of the 
magnetosphere's self-organization (SO) [Sharma, 1995, 
Klimas et al., 1996], global substorm instability [Baker 
et al., 1998], and the simple analogues of the type of a 
dripping faucet [Baker et al., 1990; Ix'limas et al., 1992; 
Horton and Doxas, 1996, 1998; Horton et al., 1998] in 
the place of a sandpile. Thus one has to conclude that 
real open and spatially extended systems demonstrate 
their double SOC-SO nature. 

We also observe this double SOC-SO nature of the 

substorm phenomenon in the results of the SSA analy- 
sis of the BBMH data where a the power law singular 
spectrum coexists with indications of the low dimen- 
sion of the system within some limited interval of scales 
and a relatively well defined cusp catastrophe manifold. 
Moreover, the analogy between the reconstructed man- 
ifold and the temperature-pressure-density diagrams of 
conventional phase transitions provides an interesting 
explanation of this nature. Specifically, we suggest that 
the substorm phenomenon is a set of the nonequilib- 
rium phase transitions including both the second-order 
transitions (analogues of SOC) and the first-order ones 
(based on the SO concept), which are organized in the 
same manner as in the equilibrium case when the critical 
curve (as the locus of the first-order transitions) ends at 
the critical point where the second-order transition oc- 
curs. According to our analysis the substorm onsets re- 
sembling the first-order transitions are relatively large. 
Probably, they are associated with the global reconfig- 
uration of the system including the formation of a near- 
Earth neutral line and a plasmoid. The phenomena on 
smaller scales are more reminiscent of the second-order 
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transitions with no global reconfiguration. They reveal, 
instead, the power law distribution of the energy over 
scales typical of turbulent plasmas and other spatially 
extended systems modeled by the mathematical sand- 
piles. Thus the exhaustive description of avalanche- 
like events in open spatially extended systems like the 
Earth's magnetosphere requires more sophisticated dy- 
namical models than the simplest mathematical ana- 
logues of the dripping faucet or the sandpile. There 
are already some advanced cellular automata models of 
substorms that explicitly take into account the SO as- 
pect through varying coherence length in the effective 
one-dimensional sandpiles [Chapman et al., 1998]. Also, 
both SO and SOC behaviors are revealed in the model 
of Takalo et al. [1999]. 
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