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The paper discusses the generation of polarized whistler waves radiated from a rotating magnetic
field source created via a novel phased orthogonal two loop antenna. The results of linear
three-dimensional electron magnetohydrodynamics simulations along with experiments on the
generation whistler waves by the rotating magnetic field source performed in the large plasma
device are presented. Comparison of the experimental results with the simulations and linear wave
properties shows good agreement. The whistler wave dispersion relation with nonzero transverse
wave number and the wave structure generated by the rotating magnetic field source are also
discussed. The phase velocity of the whistler waves was found to be in good agreement with the
theoretical dispersion relation. The exponential decay rate of the whistler wave propagating along
the ambient magnetic field is determined by Coulomb collisions. In collisionless case the rotating
magnetic field source was found to be a very efficient radiation source for transferring energy along
the ambient magnetic field lines. © 2010 American Institute of Physics. �doi:10.1063/1.3274916�

I. INTRODUCTION

The interaction of rotating magnetic fields �RMFs� with
plasmas is a fundamental plasma physics problem with im-
plications to a wide range of areas, such as fusion related
field-reversed configuration,1,2 space propulsion, precipita-
tion of energetic particle population in Van Allen radiation
belts,3,4 and near zone processes in pulsar magnetospheres.
Earth itself is an example of a rotating magnetic dipole in-
teracting with surrounding plasma. An important but not yet
explored application of RMF is as efficient radiation source
of magnetohydrodynamics �MHD� and whistler waves5,6 in
space plasma. This application became more important after
it was demonstrated that very low-frequency radio waves can
precipitate Earth’s inner radiation belt energetic electrons.7,8

The precipitation of electrons can happen through wave-
particle resonant pitch angle scattering, when electrons sat-
isfy the resonant condition,8,9

� − k�v� = −
n�ce

�
, �1�

where � is the wave frequency, k� is the wave number com-
ponent along the magnetic field line, v� is the particle veloc-
ity component parallel to the magnetic field, �ce is the elec-
tron cyclotron frequency, � is the relativistic Lorentz factor,
and n is an integer harmonic resonance number. On the other
hand the electrons can be precipitated via a nonresonant scat-
tering by creating nonlocal magnetic field gradient, which
lead to breaking of the adiabatic invariant �=v�

2 /B, where
v� is the particle velocity component perpendicular to the
magnetic field and B is the magnetic field value. The whistler
and MHD waves created by the RMF source are candidates
for creating such nonlocal magnetic field gradients.

Despite its importance, the basic plasma physics of the
interaction of RMF with magnetoplasmas, the scaling laws
that control it, and the range of potential applications to
space plasma remain unexplored. To zeroth order, in a colli-
sionless plasma a magnetic field rotating at a rate � in a
plasma drives a current due to the difference in mass of
electrons and ions. Electrons quickly come to a corotational
motion with RMF, generating a differential azimuthal current
whose theoretical maximum, when all ions are stationary and
all electrons are simultaneously involved in corotational mo-
tion, is given by J�=n�r �n is plasma density here�.

The RMF can be generated either by a system of
polyphase coils or by an actually rotating permanent or su-
perconducting magnet �see Fig. 1�. In Earth’s magneto-
sphere, for example, in the equatorial region of L=2 the
magnetic field is ��T, which yields a proton cyclotron fre-
quency of tens of hertz. In laboratory plasmas confined by an
ambient magnetic field the typical value is tens of gauss to
several kilogauss, which corresponds to an ion cyclotron fre-
quency �ci in the range 104–106 Hz. In order to generate
whistler waves, distinct from the MHD waves, we need to
drive the RMF at a rate much faster than the ion cyclotron
frequency. It is obvious that we can rotate a permanent mag-
net at a rate of tens or even hundreds of hertz, but it is
impossible to do that at kilohertz or higher rates. In space
experiments the first method is preferable since it does not
need powerful energy supply in order to drive significant
currents, while in the laboratory experiments we are forced
to use the second one.10

Key questions about the interaction of the RMF with
magnetized plasmas include the depth of penetration of the
magnetic field into the plasma, the spatiotemporal structure
of the induced waves as a function of the RMF and plasma
parameters, and spatial decay rates of the perturbed magnetic
field. In this paper we present a combination of analytic/a�Electronic mail: karavaev@umd.edu.
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computational results along with experimental results from
the large plasma device �LAPD� located at UCLA. These
results highlight the generation of MHD �Ref. 10� and whis-
tler waves in magnetized plasma by a RMF source.

II. EXPERIMENTS ON GENERATING WHISTLER
WAVES BY THE RMF

The experiments on generating whistler waves in mag-
netized plasma by the RMF were performed in the upgraded
large plasma device �LAPD-U� �Ref. 11� operated by the
Basic Plasma Science Facility at the University of California,
Los Angeles. The ambient magnetic field profile and the lo-
cation of the probes and radiation source are shown in Fig. 2.
The laboratory reference frame is oriented with the z-axis
along the axis of the chamber and the y-axis pointing verti-
cally upwards. Using a computer controlled data acquisition
system in several cross sections of the machine �see Fig. 2�,
measurements of the three components of the perturbed mag-
netic field using three axis inductive loop magnetic pickup
coil were performed on a square area with 25�25 points
with 1 cm spacing. The probe features differentially wound
loops that eliminate electrostatic pickup when used in con-
junction with a differential amplifier. The loops are wound
around a 1 mm cube with ten turns each. The cube is
mounted within a glass tube and attached to a thin ceramic

tube extending from the end of stainless steel probe shaft.
The measurements were made in the 50 G region, which
corresponds to cyclotron frequencies �ce=8.7�108 s−1 for
electrons and �ci=1.21�105 s−1 for ions �used gas—He�.
The measurements closest to the radiation source were per-
formed at distance �10 cm �p35�. The measurements far-
thest from the antenna were performed at distance �2.5 m
�p27�. Average plasma density measured by a 56 GHz micro-
wave interferometer was n=8.3�1010 cm−3. That corre-
sponds to plasma frequency �pe=1.62�1010 s−1 and elec-
tron skin-depth de=c /�pe=1.85 cm.

A two-loop antenna �see Fig. 3� is placed inside the ma-
chine in such a way that the loops of the antenna are in the
x−z and y−z planes, and centers of the loops were on the
central axis of the chamber. The antenna consists of two
independent coils �9 cm in diameter ��5de� and four turns
each. Each coil has independent power supply �resonant ad-
justable LRC circuits� that can drive an alternating current
with frequencies 50–500 kHz and current magnitude up to
500 A. The effect of mutual inductance between the coils is

FIG. 1. Methods for creating a RMF in a magnetized plasma. The RMF can
be generated either by �a� a rotating permanent magnet or �b� polyphase
coils �superconducting or normal� with alternating phase shifted currents.

FIG. 2. �Color online� Ambient magnetic field profile along the chamber: p27, p31, p32, p33, p35, and p36 are the measurement planes. The position of the
radiation source is designated by the arrow.

FIG. 3. The RMF antenna consisting of two independent coils approxi-
mately 9 cm in diameter with four turns each, shown inside the LAPD
chamber. �The orientation of the antenna shown is not an actual orientation
that was used in the experiments.� The three axis inductive magnetic pickup
probe on the tip of the stainless steel shaft is also seen. Inset shows the
design of the RMF antenna.
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negligible. First of all the coils are at right angles, thus mini-
mizing the mutual inductance. Further, the alternating cur-
rents in the orthogonal loops are independently adjusted �am-
plitude and phase� by two independent power supplies and
two independent LRC driving circuits. These currents are
measured throughout the experiments along with the wave
magnetic fields and do not change over a data run. Further-
more, we performed the measurements of the currents in
both coils even when one of the power supplies was turned
off. In that case when one of the currents was �130 A the
second was less than 1 A. That is the effect of mutual induc-
tance which was order of 1%. The direction of rotation of the
magnetic field created by the antenna can be changed by
adjusting the relative phase of the currents in the loops. A
driving frequency �fd=293 kHz� was used so that �ci��
��ce��pe.

A typical input signal is shown in Fig. 4�a�. The mag-
netic field components measured at the central axis of the
machine at distance �86 cm away from the antenna when
both coils were driven with a phase difference � /2 to gen-
erate the RMF are shown in Fig. 4�b�. Figure 4�c� shows the
output signal when the loop lying in x−z plane was turned
off. Two nearly identical currents with peak magnitude
�130 A were driven in the loops. In order to create right-
handed or left-handed rotation of the magnetic field with
respect to the ambient magnetic field direction the relative
phase difference was set either � /2 or −� /2. To compare the
plasma response to the RMF with that of a one-loop antenna,

experiments were performed with one current turned off. In
both cases of the one-loop and two-loop antennas, the Bz

component �along the ambient magnetic field� of perturbed
magnetic field was much smaller than the perpendicular
component. In the two-loop antenna case we get nearly
steady perturbed magnetic field, which rotates around the
z-axis clockwise or counterclockwise depending on the po-
larization of the RMF source. While in the case of one loop-
antenna we get oscillations of Bnorm=�Bx

2+By
2, and in this

case the wave has nearly plane polarization. These features
are shown by the hodographs �insets� in Fig. 4.

Figure 5 illustrates a method that we use to determine
the longitudinal phase velocity vph� of the generated wave. In
order to find vph� we find the equal phase points of the per-
turbed magnetic field components at different z locations but
with the same x and y coordinates. It is convenient to use as
such equal phase points zeros of the magnetic field compo-
nents �black circles in Fig. 5�. Then we fit these points with
linear functions �black dashed inclined lines in Fig. 5�,
whose slope gives the longitudinal phase velocity, which was
found to be vph� = �7.74	0.76��106 m /s. That gives the
wave numbers along the ambient magnetic field k�

=0.217–0.264 m−1, which does not depend on the direction
of rotation of the RMF or if it is one-loop antenna. That
corresponds to the longitudinal wavelength 
�

=23.8–29.0 m, which is much larger than the antenna size
and is larger than the LAPD machine length.

In Fig. 6 normalized spectra of input �Fig. 6�a�� and
response �Fig. 6�b�� are presented. One can see that mea-
sured signals contain many harmonics of the main frequency,
but with significantly smaller amplitudes. In Fig. 7 the wave
structures in the plane perpendicular to the ambient magnetic
field line for four different instants separated by T /4
=� / �2�� are presented. The main feature of the plasma re-
sponse is a two-vortex structure of the magnetic field, which
corresponds to field aligned plasma currents. The distance
between their centers is �14 cm, which is �1.5 times di-
ameter of the antenna loops. The measurements show that
this distance does not depend on time and the distance from
the radiation source along z-axis. It implies that in the plane
transverse to the ambient magnetic field the wave has nearly
constant characteristics and is well confined by the ambient

FIG. 4. �Color online� �a� Dependence of input current on time �two cur-
rents are on�, �b� perturbed magnetic field components on the central line of
the machine �86 cm away from the radiation source �two currents are on�,
and �c� perturbed magnetic field components on the central line of the ma-
chine �86 cm away from the radiation source �one current is off�.

FIG. 5. �Color online� An illustration how the longitudinal phase velocity is
determined from the experiment measurements. Red lines represent Bx com-
ponents of the perturbed magnetic field on the central axis of the LAPD
machine at different z locations. Black circles represent the points of the
equal phases �in this case zeroes of Bx� in different z locations. Inclined
dashed lines are linear fit of the equal phases points, whose slope gives the
phase velocity. The input currents are shown for a reference.

012102-3 Generation of whistler waves… Phys. Plasmas 17, 012102 �2010�



magnetic field. The entire field structure rotates either clock-
wise or counterclockwise depending on the phase shift be-
tween the two input currents. In the one-loop case the radia-
tion pattern does not rotate but oscillates with frequency �. It
means that the circularly polarized whistler wave generated
by the RMF source is preferable for creating nonlocal mag-
netic field gradient than the plane polarized wave generated
by the one-loop antenna.

III. COMPARISON OF EMHD MODEL
AND EXPERIMENT

A three-dimensional �3D� electron magnetohydrodynam-
ics �EMHD� code described in details in the Appendix was
used to simulate the experiment with exactly the same pa-
rameters, viz. antenna loops size 9 cm, current magnitude
130 A, driving frequency 293 kHz, electron plasma density
8.3�108 cm−3, and ambient magnetic field 50 G. A typical
mesh size of 256�256�512 grid points was used in the
simulations. In Fig. 8 the magnetic field structure measured
in the experiment �Fig. 8�a�� is compared to the simulations
using the 3D EMHD model for the experimental parameters
�Fig. 8�b��. This figure shows the field at the plane perpen-
dicular to the ambient magnetic field for the same instant of
time. One can see not only a qualitative but also a quantita-
tive agreement between the 3D EMHD model and the ex-

FIG. 6. �Color online� Input current �a� and typical response signal on the
central axis of the LAPD machine �86 cm away from the radiation source
�b� normalized spectra.

FIG. 7. �Color online� Magnetic field structure at the plane perpendicular to the ambient magnetic field lines at the distance z=86.35 cm from the radiation
source for four different instants of time separated by one quarter of the period �Bnorm it the normal to the ambient magnetic field component of perturbed
magnetic field�.
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periment. Once again we want to draw attention to the two
vortex structures of the magnetic field corresponding to the
field aligned plasma currents.

The radiation patterns �square of the normal component
of the magnetic field averaged over a period of rotation,
which is essentially the wave intensity� for one-loop �Fig. 9�

and two-loop with right handed rotation �Fig. 10� cases mea-
sured in experiments �a.1�–�a.4� and calculated using the 3D
EMHD models �b.1�–�b.4� are presented. Also in Figs. 9 and
10 the comparison of experimental and model dependence of
the magnitude of the perturbation along the transverse coor-
dinates �c.1�–�c.4� are presented. One can see good overall

FIG. 8. �Color online� Magnetic field structure in the plane perpendicular to the ambient magnetic field lines at the distance z=86.35 cm from the radiation
source for some instant of time: �a� measured in the experiment and �b� 3D linear EMHD calculations. �Color palette shows the magnitude of B�—normal
to the ambient magnetic field component of perturbed magnetic field in gauss.�

FIG. 9. �Color online� Radiation pattern ��Bx
2+By

2	 averaged over a period T=1 / fD, that is wave intensity up to some coefficient� for one loop case �loop lying
in yz plane is turned on�. �a.1�–�a.4� Experimental measurements, �b.1�–�b.4� 3D EMHD model, and �c.1�–�c.4� comparison of experimental and EMHD
calculated dependencies of the magnitude of normal component of perturbed magnetic field along transverse axes �dots—experimental measurements, solid
lines—EMHD model, red—cross section in x direction, blue—cross section in z direction�.
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agreement of the experimental results and calculated using
the 3D EMHD model for both one-loop and two-loop an-
tenna cases. The main feature of the radiation pattern for
both cases is that the characteristic size of the spot in the
direction transverse to the ambient magnetic field does not
depend on the distance from the antenna along the field line,
while the magnitude of the magnetic field perpendicular to
the ambient magnetic field decreases due to energy leakage
away from it and due to the effect of collisions, which will
be discussed further.

In Fig. 11 the dependence of the magnitude of the nor-
mal to the ambient magnetic field component of perturbed
magnetic field calculated using EMHD model, described in
the Appendix, on distance from the antenna along the z-axis
is compared with the experiment �a� and fitting functions �b�.
The best agreement between the EMHD calculations and ex-
perimental measurements were obtained for the effective col-
lision frequency �=0.007�ce
6.2�106 s−1. Also in Figs.
11�a� and 11�b� the dependence of the magnitude of per-
turbed magnetic field for the nondissipative case is pre-
sented. For the nondissipative case we fitted the magnitude
dependence on distance from the source z for z�0.5 m. It

was found that the magnitude depends on z as �1 / ln�az
+b� which is actually a very slow decay rate compared, for
example, with 1 /z. This slow decay rate distinguishes the
generation of the whistler waves by magnetic dipole and the
RMF source antennas from the generation of whistler waves
by an electric dipole antenna, which has been studied
by many authors theoretically, experimentally, and
numerically.12–18 In Ref. 14 it is clearly demonstrated that in
the case of linear small magnitude whistler waves driven by
the electric dipole antenna the magnitude of the wave decays
very fast along the ambient magnetic field even in the colli-
sionless plasma due to the fact that the energy radiated is
nearly evenly distributed inside the resonance cone. In order
to force the self-ducting of the whistler waves along the am-
bient magnetic field it is necessary to drive fairly large mag-
nitude waves, which are able to modify plasma itself due to
nonlinear wave-particle interaction. In our case, the whistler
waves generated by the magnetic dipole and the RMF anten-
nas the perturbation is weak compared to the ambient mag-
netic field, more over, the model described in the Appendix
is purely linear, and the plasma density is uniform, but still
we are able to generate the wave in which almost all the
energy transfers along the ambient magnetic field and only a

FIG. 10. �Color online� Radiation pattern ��Bx
2+By

2	 averaged over a period T=1 / fD, that is wave intensity up to some coefficient� for two loop case �right
handed rotation of the RMF�. �a.1�–�a.4� Experimental measurements, �b.1�–�b.4� 3D EMHD model, and �c.1�–�c.4� comparison of experimental and EMHD
calculated dependencies of the magnitude of normal component of perturbed magnetic field along transverse axes �dots—experimental measurements, solid
lines—EMHD model, red—cross section in x direction, blue—cross section in z direction�.
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small portion of it goes to peripheral, which determines the
slow decay rate. This is possible because of significant field
aligned plasma currents. This feature becomes more impor-
tant for the circularly polarized whistler wave generated by
the RMF source. It means that we are able to create a per-
turbation of the magnetic field, whose value never goes to
zero, over a very long distance in space plasma, which is
essentially collisionless. For the dissipative case with effec-
tive collision frequency �=0.007�ce the best fit is with func-
tion �exp�−z /d� / ln�az+b� with characteristic decay dis-
tance d=3.704 m.

Although the overall agreement between the experimen-
tal measurements and EMHD model results is good, the dif-
ference at the plane closest to antenna �9.5 cm� is significant.
At this location the model yields magnitudes, which are
nearly half of the experimental values. The reason for this is
the way the simulation code is implemented. As one can see
from Fig. 11 in the region close to the antenna the magnitude

decays very fast from �10 to �0.5 G at 10 cm distance, and
its spectrum has very high harmonics. However in our cal-
culations we are forced to reduce the number of harmonics in
the Fourier domain, which are determined by the grid size.

Using parameters of the experiment such as gas pres-
sure, temperature of neutrals, electrons, and ions and plasma
density, we can estimate effective electron-neutral �en and
electron-ion �ei collision frequencies. For electron-neutral
collision frequency empirical formula from Ref. 19 gives
�en
5.6�104 s−1, which is two orders of magnitude lower
than the collision frequency in the model. For electron-ion
collision frequency the estimate20 is �ei
5.8�106 s−1,
which is very close to the value �=0.007�ce
6.2
�106 s−1 obtained from EMHD model for the best match
with the experimental measurements. This implies that, the
whistler wave generation experiment along with presented
3D EMHD model could be used to estimate the electron
collision frequency.

Now we want to discuss the properties of the whistler
wave dispersion relation. For the experimental parameters
the plasma 
=nkBT / �B0

2 /2�0��10−3�1 and cold magneto-
hydrodynamics approach is applicable. The general disper-
sion relation in the frames of MHD approach could be writ-
ten as5

tan2 � =
n�

2

n�
2 = −

P�n2 − R��n2 − L�
�Sn2 − RL��n2 − P�

, �2�

where � is the angle between the direction of the ambient
magnetic field B0 and wave vector k, n=ck /�, n�=ck� /�,
and n� =ck� /�, where k� and k� are the components of the
wave number normal and parallel to the ambient magnetic
field �k�=k sin � , k� =k cos ��. The terms R, L, P, and S are
given by

R = 1 − �
s

�ps
2

�2

�

� + i�s + �cs
, �3�

L = 1 − �
s

�ps
2

�2

�

� + i�s − �cs
, �4�

P = 1 − �
s

�ps
2

�2

�

� + i�s
, �5�

S =
R + L

2
, �6�

where s denotes sum over all species �electrons and helium
ions in our case�, �ps, �cs, and �s are the plasma, cyclotron,
and effective collision frequencies of the specie s, respec-
tively. Resolving Eq. �2� with respect to n2 we get

n1,2
2 =

�PS�1 + cos2 �� + RL sin2 �� 	 ��PS − RL�2sin4 � + P2�R − L�2cos2 �

2�S sin2 � + P cos2 ��
�7�

FIG. 11. �Color online� Dependence of the magnitude of normal to the
ambient magnetic field component of perturbed magnetic field along the
ambient magnetic field: �a� comparison of EMHD model with the experi-
ment, �b� fitting of the EMHD model results by a functions �1 / ln�az+b�
for collisionless case ��=0�, and �exp�−z /d� / ln�az+b� for case with colli-
sions ��=0.007�ce�.
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as a function of the wave vector direction. Setting the param-
eters used in the experiment, we get the relation between the
longitudinal wave number k� and the transverse wave number
k� �see Fig. 12�.

First, we consider collisionless plasma case ��S=0�. In
the EMHD model we neglect the ion motion. In this limit the
dispersion relation �Eq. �2�� reduces to the quasilongitudinal
whistler wave dispersion relation �Eq. �A22��. The EMHD
model relation is represented by blue solid line in Fig. 12.
The presence of ion motion modifies the whistler wave re-
fraction index surface. Particularly, for the experimental fre-
quency �=0.002 093�ce the relation between the longitudi-
nal k� and transverse k� wave numbers behaves
fundamentally differently �red solid line in Fig. 12�. For the
experimental frequency in the two fluid MHD model the
transverse wave number k� has a cutoff above which the
whistler wave mode is evanescent, unlike the EMHD model
refractive index surface which is unbounded. It was
shown21,22 that the frequency, which separates this two re-
gimes, is the lower-hybrid resonance �LH=��ci�ce=1.03
�107 s−1. Moreover, the EMHD model is applicable to the
collisionless cold plasma only if the driving frequency � is
well above the lower hybrid resonance �LH.22 In our case the
experimental driving frequency � lies below the �LH, and, in
general, the EMHD approach is not applicable to describe
our experiment. However, the inclusion of the finite effective
collision frequencies �s in Eq. �2� changes the picture.

We estimated the collision frequencies for electrons to
be �en
5.6�104 s−1 �electron-neutral collisions� and �ei


5.8�106 s−1 �electron-ion collisions�. The experimental
parameters yield the ion-neutral collision frequency order of
102 s−1. Thus, for both species, electrons and ions, the col-
lisions are dominated by the Coulomb collisions. Strictly
speaking, the dispersion relation �Eq. �2�� is not valid in that
case because of the momenta exchange between the two spe-
cies, and more accurate expressions should be used, but to a
first approximation the effect of ion-electron collisions in the
two fluid MHD model could be included by using as the
effective ion collisions rate the value �i= �me /mi��ei in Eq.
�2�.23 Using this value of the collision frequencies we get the
relations of the real parts of longitudinal and transverse wave

numbers in the EMHD �green dashed line in Fig. 12� and
two fluid MHD �magenta dashed line in Fig. 12� models.
One can see that below a certain transverse wave number the
dispersion relations from all three models, viz. the collision-
less EMHD, collisional EMHD, and collisional two fluid
MHD, essentially yield the same mode. From the simulations
we found the longitudinal wave number to be k�

=0.2312 m−1 �
� =27.18 m�. That corresponds to the trans-
verse wave number k�=22.40 m−1 �
�=28.05 cm� on the
collisional EMHD dependence �red circle in Fig. 12�. This
transverse wavelength is two times the distance between the
vortices in the field structure corresponding to the field
aligned currents. This result does not depend on driving fre-
quency � or the distance from the antenna along the ambient
magnetic field, but is determined by the size of the antenna.
We did a series of simulations using 3D EMHD model vary-
ing the diameter of the antenna loops, and it was found that
the distance between the vortices in the magnetic field struc-
ture �that is half of transverse wavelength 
� /2� is roughly
the size of antenna, within a couple of electron skin depths.
Again we emphasize here that the distance between two vor-
tices in the wave picture corresponding to the field aligned
plasma currents does not depend on the distance from the
antenna along the ambient magnetic field. The range of ex-
perimentally measured longitudinal wavelength 
�

=23.8–29.0 m corresponds to the transverse wavelength

�
42 cm in the frames of two fluid MHD model, which is
1.5 times larger than the value in the frames of the EMHD
model.

In Fig. 13 the dispersion relation for 
�=28.05 cm is
presented. The solid black line represents the analytical dis-
persion relation �Eq. �A24�� in the collisionless limit. The
green dashed line represent analytical dispersion relation in
the frames of EMHD model taking into account the finite
collision frequency �e=0.007�ce. Results of the 3D EMHD
modeling �blue circles and blue pentagram� lie on top of the
theoretical curves. The experimental point �red diamond� is
also in good agreement with the analytical dispersion rela-
tion.

FIG. 12. �Color� Relation of the transverse wave number k� to the longitu-
dinal wave number k� for the whistler wave with frequency �
=0.002 093�ce �used in the experiment�.

FIG. 13. �Color online� Comparison of analytical dispersion relation,
EMHD model calculations, and the experiment for 
�=28.05 cm.
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IV. WAVE STRUCTURE FROM THE DISPERSION
RELATION

Finally we present some general properties of the disper-
sion relation �Eq. �A24�� and the corresponding wave struc-
tures generated by magnetic loop and RMF antennas in three
dimensions. First of all the effect of finite transverse wave
number k� makes the dispersion relation �Eq. �A24�� very
different from the dispersion relation �Eq. �A23�� for the
plane whistler wave propagating along ambient magnetic
field with zero k�, which is well known. For example, in the
three dimensional case, whistler waves generated by a finite
size antenna can have a polarization different from the plane
whistler wave with zero k�, which is right hand polarized.

In Fig. 14 the dependence of k� on k� given by Eq.
�A24� for frequency �=0.05�ce is presented. The main fea-
ture of the dependence is that above the value �0.1 and
below �0.225 for every k� there are two corresponding val-
ues of k�. That is for the same k�, two waves with different
k� can be generated. The vertical solid line in Fig. 14 repre-
sents the longitudinal wave number k� found using the 3D
EMHD model for the frequency �=0.05�ce and the current
loop diameter �4.9de. For this longitudinal wave number k�

there are two corresponding transverse wave numbers �blue
circles�. The lowest of them corresponds to the distance
�14.0 cm between the centers of two vortexes in the mag-
netic field structure �see Figs. 7 and 8� corresponding to the
field aligned plasma currents.

The relationship of k� to k� determines the direction of
the wave vector k, which is the direction of the phase veloc-
ity. The angle between this wave vector k and the z-axis is
85.13° and corresponding wave front has slope 4.87° with
respect to the z-axis. In Fig. 15 the dependence of the Bx

component �perpendicular to the plane of the picture� of per-
turbed magnetic field in the plane containing the current loop
for the driving frequency �=0.05�ce is presented. One can
see the two wave structures of the whistler wave exited by
the finite size antenna. Both waves share the same longitudi-
nal wave number k�, but they have different transverse wave
numbers k� determined by the dispersion relation �Eq.
�A24��. The wave vector corresponding to higher transverse

wave number k� is shown. It has angle 85.13° with respect
to the z-axis.

In Fig. 16 the plasma current structure in the plane con-
taining the loop with the current corresponding to the wave
shown in Fig. 15 is presented. The color shows the Jx com-
ponent of the plasma current and the black curves represent
plasma current flow-lines in the plane of the picture. Again
one can see the two wave structure of the excited whistler
wave in the plasma current structure. We should furthermore
emphasize that in Fig. 16 the dominant plasma current is
concentrated near the z-axis, and the width of the current
loops on the symmetry axis does not change with the dis-
tance from the antenna. The plasma current forms a chainlike
structure whose characteristic size �that is the transverse
wavelength� is determined by the size of the antenna and
does not depend on distance from the antenna along the am-
bient magnetic field line. The maxima of the field aligned
current correspond to the centers of the vortices in the mag-
netic field structure in the plane perpendicular to the ambient
magnetic field. The length of the “chain segments” is deter-
mined by the dispersion relation �Eq. �A24�� and become
longer when the driving frequency � goes down. In the case
of the two-loop antenna generating the RMF this chain struc-
ture has right or left handed helicity depending on the phase
difference in the antenna currents. So the major part of the

FIG. 14. �Color online� Dependence of the transverse wave number k� on
the longitudinal wave number k� for frequency �=0.05�ce.

FIG. 15. �Color online� Bx component �perpendicular to the plane of the
picture� of the perturbed magnetic field in the plane containing the loop with
the current �ring at the origin� for the frequency �=0.05�ce.

FIG. 16. �Color online� Plasma current structure in the plane containing the
loop with the current �ring in the origin� for the frequency �=0.05�ce.
Color shows Jx component �perpendicular to the plane of the picture� of the
current. The black curve lines represent plasma current flow lines in the
plane of the picture. �The current flow lines only for the region close to the
symmetry axis are shown.�
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plasma current is field aligned and well confined by the am-
bient magnetic field. It explains the very slow decay rate of
the whistler waves generated by the magnetic dipole and the
two-loop antennas.

Finally, we want to discuss the difference between the
whistler waves generated by the one-loop antenna and the
two-loop RMF source. In Fig. 17 a distribution of the per-
turbed magnetic field component Bnorm normal to the ambi-
ent magnetic field for some instance of time in the whistler
wave driven in collisionless plasma with frequency �
=�ce /50 by one-loop �Fig. 17�a�� and two-loop �Fig. 17�b��
antennas is presented. The insets feature the polarization of
the wave in the central symmetry axis. In one-loop antenna
case the polarization is right-handed elliptical, and nearly
plane. For two-loop antenna case the wave is right-handed

�or left-handed, depending on the phase difference of the
driving currents� circularly polarized. The ellipticity in one-
loop case depends on the driving frequency �. For low fre-
quencies ���ce the ellipticity is nearly 1, and the waves
generated by the one-loop antenna have nearly plane polar-
ization. It is consistent with the experiment �see inset on Fig.
4�c��. When the frequency goes up and approaches �
=0.5�ce the polarization of the wave generated by one-loop
antenna become more circular. One can see that in both cases
of one-loop and two-loop RMF antennas the wave front is
very narrow corresponding to the antenna size and decays
slowly along z-direction due to peripheral leakage of energy.
From the simulations we estimate the amount of the wave
energy inside the central channel within the radius of 
� /2
relative to the all energy radiated as

FIG. 17. �Color online� Distribution of the normal component of the wave magnetic field for some instance of time generated by one-loop �a� and two-loop
antenna with right-handed polarization �b�. The one loop antenna lays in xz plane at the origin. The loops of two-loop antenna lay in xz and xy planes at the
origin. �Antenna loop diameter �4.9 electron skin depth, driving frequency—�=�ce /50, collisionless case.�
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��z� =
�0


�/2�Bnorm
2 ��,z�d�

�0
��Bnorm

2 ��,z�d�
, �8�

where Bnorm is the magnitude of the normal component of the
wave field. We found that wave energy which stays within
the 
� /2 radius is order of 75%–85% �depending on the
driving frequency� of the whole energy radiated. It means
that the magnetic dipole and RMF source antennas are very
efficient for transferring radiation along the ambient mag-
netic field. The other feature that distinguishes one-loop an-
tenna from the two-loop antenna case is that in two-loop
antenna case the normal component of the perturbed mag-
netic field is sufficiently nonzero along the central symmetry
axis while in the one-loop antenna case it oscillates in space.
That is consistent with the experiment �see Fig. 4�. This fea-
ture is important for generation of nonlocal field gradient and
nonresonant scattering of energetic particles.

V. CONCLUSION

We have demonstrated the concepts of a new type the
RMF-based antenna/active device for generation whistler
waves. We investigated the interactions of the RMF �for the
frequency �ci����ce��pe� with magnetized plasma in
experiments and three-dimensional EMHD simulations. We
found very good agreement of the linear 3D EMHD model
with the experiment, not only qualitatively, but also quanti-
tatively. We found that the whistler waves generated by both
the one-loop and two-loop antennas are confined by the am-
bient magnetic field without nonlinear wave particle interac-
tion and/or plasma density ducts. The generated wave struc-
tures has significant field aligned plasma currents confined
by the ambient magnetic field. That allows to transfer the
radiation along the ambient magnetic field very efficiently. In
the collisional plasma the wave decay rate is determined by
Coulomb collisions. In the collisionless case very slow decay
rate is determined by the leakage of the wave energy from
the central axis to peripheral. The whistler wave generated
by the RMF has sufficiently nonzero normal component
along the central symmetry axis while in the one-loop an-
tenna case the normal component of the wave magnetic field
oscillates along the ambient magnetic field. Analytical dis-
persion relation for whistler wave in cold plasma, Eq. �A24�,
is in very good agreement with the results of the 3D EMHD
simulations and the experimental measurements. The whis-
tler wave generation by magnetic dipole along with the 3D
EMHD model is used for estimating an effective electron
collision frequency.
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APPENDIX: LINEAR MODEL OF WHISTLER
WAVE PROPAGATION

Here we describe a linear model which was used to
simulate the propagation of whistler waves generated by a
RMF using a 3D linear spectral code. Following the EMHD
approach,18,24–26 starting from the Maxwell and the electron
momentum equations, neglecting the displacement current
and assuming stationary ions �for the frequency range �ci

����ce�, the equations governing a quasineutral cold elec-
tron fluid can be written as

� � E = −
1

c

�B

�t
, �A1a�

� � B = −
4�

c
env +

4�

c
Jext, �A1b�

�v

�t
+ �v · ��v = −

e

me
E −

e

mec
v � B − �v , �A1c�

where E and B are electric and magnetic fields, v is the
velocity of the cold electron fluid, n=n0�x� is the number
plasma density, which is space dependent, but assumed to be
independent on time, e and me are the electron charge and
mass, Jext is an external current density, and � is an effective
frequency of electron collisions either with ions or neutrals.
We further consider a simplified case of uniform electron
plasma n�x�=n0=const. We also consider a case of uniform
background magnetic field, i.e., B=B0+B�, where B0 is a
constant in time and space and B� is a magnetic field pertur-
bation.

Normalizing length by the electron skin depth L=c /�pe

and time by the inverse of the electron cyclotron frequency
T=�e

−1, the normalized variables become t̄= t /T, x=x /L, v
=Tv /L, B=B /B0, E= �cTE� / �LB0�, and �̄=� /�ce. We can
then rewrite Eq. �A1� in the linearized form,

� � E = −
�B

� t̄
, �A2a�

� � B = − v + 4�Jext, �A2b�

�v

� t̄
= − E − v � b − �̄v , �A2c�

where B is the perturbed magnetic field and b is the unit
vector in the direction of the ambient magnetic field B0, cho-
sen to be along the z-axis. The external current Jext, which is
used to drive the RMF, can be introduced in the model as the
loops of the antenna. In our case the size of the antenna is
much smaller than the wavelength, and if we want to resolve
both the wavelength and the size of the antenna we must use
either nonuniform or very fine mesh with a large number of
cells. Instead of this we use an analytic solution which re-
moves the necessity to resolve the antenna size by mesh.
From this point to the end we will work only with dimen-
sionless variables, so we drop the bars in the remaining sec-
tion of the paper. We decompose the electric and magnetic
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field perturbations into wave fields and the given localized
driving fields �E=E�+Edrive , B=B�+Bdrive� with

Edrive = −
�

�t
Adrive, �A3a�

Bdrive = � � Adrive, �A3b�

where Adrive is a vector potential that satisfies the equation

� � � � Adrive + Adrive = 4�Jext. �A4�

Solution of Eq. �A4� can be written in terms of a Green’s
function as

Adrive�r,t� = 

C

Jext�r�,t�G�r,r��dC�r�� , �A5�

where C is the current contour and G�r ,r�� is the Green’s
function,

G�r,r�� =
1

�r − r��
exp�− �r − r��� . �A6�

The principle of superposition is applicable to the vector
potential Adrive and it can be calculated for each current in-
dependently. In Eq. �A5� the time dependence appears only
as exp�−i�t�, thus the value of Adrive should be calculated
only once at the very first time step.

Using Eqs. �A3� and �A4�, Eq. �A2� can be written as

�v

�t
= � � � � E� +

�

�t
Adrive, �A7a�

� � B� = − v + Adrive, �A7b�

� � � � E� + E� = − v � b − �v . �A7c�

Equation �A7� can be solved numerically using a special
method in three dimensions, noting that the time dependence
enters only in Eq. �A7a�. We can construct the algorithm for
numerical integration of the system in the following way. For
given E, B, and v at t= tn, using Eq. �A7a�, we can perform
one step integration in time to get v at instant t= tn+1. This
new value of v is used to obtain B and E at t= tn+1, and the
process is repeated. This approach to the solution of Eq. �A7�
was used in Refs. 18 and 26. The advantage of this method is
that this algorithm can handle the fully nonlinear problem
�Eq. �A1�� without dropping the convective term �� ·v�v and
the nonlinear v�B� term. The problem with this method
when using the spectral method is that we have to resolve
Eq. �A7� for every possible Fourier component k. Since the
time step should be small enough to resolve the electron
cyclotron frequency we have to perform many thousands of
steps to resolve at least one period of oscillation for the case
when the driving frequency ���ce. Besides in the present
work we consider only the linear case of whistler waves for
which an analytical solution of Eq. �A7� can be obtained.

We select the reference frame in such a way that the
ambient magnetic field B0 is oriented along the z-axis �b
=ez�. In the Fourier domain from Eq. �A7� we get the electric
field E� expressed through the velocity v�,

E� = −
v� � ez + �v� + k�k · �v� � ez��

1 + k2 , �A8�

and the closed system for the velocity v�,

�v�

�t
=

− k2�v� � ez + �v�� + k�k · �v� � ez��
1 + k2 +

�

�t
Adrive

� ,

�A9�

where asterisks denote the Fourier components.
In the component form Eq. �A9� is a 3�3 linear system,

which can be written as

�v�

�t
= L�k�v� +

�

�t
Adrive

� , �A10�

where

L�k� =
1

1 + k2�− �k2 + kxky − k2 + kx
2 0

k2 − ky
2 − �k2 − kxky 0

− kykz kxkz − �k2� �A11�

is the system matrix and k2=kx
2+ky

2+kz
2, while v� and Adrive

�

are treated as column vectors. Solution of Eq. �A10� can be
written in the form

v��k,t� = U�k�e��k�t�U−1�k�v��k,0�

+ 

0

t

e−��k�t�U−1�k�
�

�t�
Adrive

� �k,t��dt�� , �A12�

where ��k� and U�k� are diagonal matrix of eigenvalues and
modal matrix that consists of columns of corresponding
eigenvectors, which decompose the system matrix �Eq.
�A11�� as

L = U�U−1 �A13�

and do not depend on time. Thus, for a given geometry they
can be computed only once. Particularly, in the case of har-
monically driven field and zero initial plasma current we get

�

�t
Adrive

� �k,t� = F��k�ei�t, v��k,0� = 0, �A14�

and Eq. �A12� transforms into

v��k,t� = U�k�M�k,t�U−1�k�F��k� , �A15�

where

M�k,t� = �e��k�t − ei�tI����k� − i�I�−1, �A16�

where I is identity matrix.
To find the eigenvalues of L�k� we need to solve char-

acteristic equation which can be written in the form

��
 +
�k2

1 + k2�2

+ � kkz

1 + k2�2��
 +
�k2

1 + k2� = 0. �A17�

This gives us the eigenvalues
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1,2 = −
�k2

1 + k2 � i
kkz

1 + k2 , 
3 = −
�k2

1 + k2 . �A18�

The first pair of complex conjugate roots describes wave
propagation in 	ez directions with frequency

��k� = − Im�
1,2� = 	
kkz

1 + k2 �A19�

and uniform attenuation

Re�
3� =
�k2

1 + k2 . �A20�

The last eigenvalue describes purely decaying, nonpropagat-
ing mode. Finally we get the dispersion relation for the whis-
tler waves,

�� + i
�k2

1 + k2�2

= � kk�

1 + k2�2

, �A21�

which in the nondissipative case become

� =
kk�

1 + k2 . �A22�

This is the quasilongitudinal dispersion relation in Ref. 18
with k� =kz. In the case of plane whistler waves propagating
along the ambient magnetic field k=k�, that is, the wave vec-
tor k has no transverse component �k�=0�, we get the well-
known whistler dispersion relation

� =
k2

1 + k2 . �A23�

Equation �A22� can be rewritten as

� =
k�

�k�
2 + k�

2

1 + k�
2 + k�

2 . �A24�

For k�
2, Eq. �A24� has two solutions. One of them corre-

sponds to the evanescent wave and plays significant role for
the near field structure. The second root

k�
2 =

− k�
2 + 2�1 + k�

2 ��2 + �k�
4 + 4�2�1 + k�

2 �
2�1 − �2�

�A25�

corresponds to the propagating mode. To calculate the value
of the longitudinal wavelength 
� =2� /k� we need to know
the value of normal component of wave vector k�, which is

mainly determined by the source of the radiation. For ex-
ample, if we have an oscillating electric dipole oriented per-
pendicular to the ambient magnetic field its size will be
roughly half the wavelength in the transverse direction. In
the case of the magnetic dipole the perpendicular wavelength
is also determined by the antenna size.
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