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CubeSat Observations at 300 km Altitude

 HF Signal from High Power Radio Waves
— Near Vertical Transmissions
— Reflected Below F-Layer Peak
— Low Altitude Expendable Satellites Needed

* |lonospheric Modification Effects
— High Power Radio Waves
— Enhanced Electron Densities
— Elevated Energetic Electron Fluxes
— Plasma Wave Generation
— ELF/VLF Wave Detection

e Spacecraft Opportunities
— Canadian ePOP
— NRL MiniHFR
— Swedish PSI



Satellite Observations of Current
lonospheric Modification Facilities
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Arecibo HF Faclility Antenna Gain at
8.175 MHz Giving 220 MegaWatts ERP
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Electron Acceleration and Irregularity Formation 2nd
Harmonic of the Electron Cyclotron Frequency

HAARP Artificial
Aurora

— 2.85 MHz

— 3.6 MW
Transmitter
Power

— March 2009
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Artificially Produced Plasma Layers

Near 200 km Altitude

Source: Todd Pedersen et al. 3009, Creation of Artificial
lonospheric Layers Using High-Power HF Waves
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HAARP Instrument Experiments with
Instrumented Satellites
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"PACIFIC OCEAN - HAARP Antenna Array

PERCS Operational Utility
— Absolute Measurement of HAARP Antenna Pattern from 2.8 to 10 MHz
— Precise Measurements of Plasma Waves Generated by HAARP




Satellite Support of Nonlinear
Excitation of the lonosphere

 High Power Radio Waves

— Stimulated Electromagnetic and Electrostatic
Emissions (SEE) for Radio Receiver
Instrument (RRI)

— Electron Acceleration

— Enhanced Airglow

— lon Acceleration

— Electron Density Irregularities



e-POP/CASSIOPE — Imaging particle instruments for

unprecedented resolution on satellites

Micro-Satellite:  IRM: Imaging rapid ion mass
Instrument Payload spectrometer |
« SEI: Suprathermal electron imager
 NMS: Neutral mass and velocity
Cassiope Booms Spectrometer
Deployed

— Auroral imager and wave receiver-
transmitter for first micro-satellite
measurements

* FAI: Fast auroral imager
 RRI: Radio receiver instrument

« CERTO: Coherent electromagnetic
radio tomography

— Integrated instrument control/data
handling, and science-quality orbit-
attitude system data to maximize
science return

 MGF: Magnetometer

» GAP: Differential GPS Attitude and
Position System




ePOP CASSIOPE Mission Overview

 Inclination: 80 Degrees

e Orbit: 300 x 1500 km

e Lifetime: > 1 Year

 |nitial Apogee Over Northern Latitudes

e Orbit Decay Over 2 Years
— 110 km at Apogee
— 12 km at Perigee
— Initial Argument of Perigee: 270 degrees

e Launch: Late 2012

e 3-Axis Agile Spacecraft

e Noon/Midnight Orbit

e 2 kRad per year with 0.0825 Inch Shielding

e Spacecraft Critical Design Review April 2005



A i &

S /y:g:

\'-’@,?E‘-"—&g*/“‘
UNIVERSITY OF

CALGARY

e-POP Payload Science Instruments

* IRM will detect 3D ions distribution at 1 to 100 eV for 1 to 40 AMU
mass species.

» SEIl will detect the 2D electron distribution function in the energy
range of 2 to 200 eV.

 NMS will measure neutral particle constituents. It is capable of
resolving both the neutral particle composition and the flow velocity.

* FAI will do simultaneous imaging of the near-infrared band in the
range 650-850 nm, and the monochromatic wavelength of 630 nm.

* RRI will measure the electric fields of spontaneous waves in the
frequency range of 100 Hz to 18 MHz

* MGF will measure the ambient magnetic field with a dynamic range
of £60,000 nT and a resolution of 1 nT.

» GAP will provide precision timing and time-of-day information in real
time, as well as high-resolution spacecraft position and velocity.

« CER will emit coherent EM radiation to an array of ground receivers
clustered along -75° E longitude. The measured signals would be
used for tomographic analysis.



Earth Coverage by ePOP/CASSIOPE
In a 80° Inclination ORBIT




Space-Based, Diagnostic Requirements for
HAARP Measurements

Measurement Importance Diagnostic ePOP Instrument
ELF/VLF Waves Very High Receiver Covering RRI
1 Hz to 30 kHz 10 Hz to 30 kHz
Field Aligned VLF Ducts High In Situ Electron SEI
Artificial and Natural Density Probe (107 to 10° cm-3)
Elevated F-Region Moderate Thermal Electron SEI
Electron Temperature Detector 0.0t0 0.3 eV (0 to 200 eV)
as Duct Signature
Optical Emissions from Moderate Photo Detector FAI
Precipitation N,1P, 630, 557.7, (630 to 850 nm)
427.8, 777.4 nm
Suprathermal Electron Moderate Energetic Electron SEI
Fluxes Detector (0 to 200 eV)
Modulated HAARP Moderate HF Receiver/Antenna RRI
Pump Wave (3 to 9 MHz) (1-18 MHz, 30 kHz
Bandwidth)

Note: RRI = Radio Receiver Instrument, SEI = Suprathermal Electron Imager, FAI = Fast Auroral Imager,
CERTO = Coherent Electromagnetic Radio Tomography, IRM = Rapid lon Mass Spectrometer




EPOP Booms — Deployed
(Looking at underside of lower deck plate)

MGF Boom

IRM Boom

RRI Boom

Base Deck
Plate




lonospheric Heating Simulations
on Field Line Above Transmitter
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%Cem JOINT CERTO and GPS-GAP

OPERATIONS ON CASSIOPE

From GPS
Satellite

CERTO on ePOP - PDR 6 June 2004



Active Experiments ePOP Experiment Modes
Paul A. Bernhardt, NRL

Experiment | Modulated HF HF Heater HF Heater
Heater Heater Stimulated Plasma
Wave Artificial |Electromagnetic| Temperature
Generation | Aurora | Emission (SEE) | Enhancements
Instrument (MHWG) (HAA) (PTE)
RRI VLF/ELF | 0~5 MHz 0~5 MHz HF Waves
SEI Yes WPI WPI lonMode
FAI No Yes NO No
CER No CERALLC No No
IRM No No No IRMTIS
NMS No No NO No
GAP No No No No
MGF No No NO No
Altitude <800 km | <800 km < 350 km Any
Requirements
Pointing At Event At Event Event Z-Nadir

Note: RRI = Radio Receiver Instrument, SEI = Suprathermal Electron Imager, FAI = Fast Auroral Imager,
CERTO = Coherent Electromagnetic Radio Tomography, IRM = Rapid lon Mass Spectrometer, GAP =
Differential GPS Attitude and Position System, MGF = Magnetometer




Miniature HF Receliver
(MInIHFR)

 Miniature HF Receiver
— Power: 5 and 3.3 V available @ 5 W total power (continuous operation)
— Volume — 3 boards = 3 to 5 cm of stack
— Mass -800¢g
— Pointing accuracy need — 20 deg (dependent on link margin analysis)
— Pointing direction
* highest gain of antennas collinear with the ram direction
 highest gain in nadir direction for receiving ground beacons

— Shadowing/ field of view/aperture size — no deployables within the
highest gain of antennas

— TT&C need through C&DH/Radio and down to the ground — TBD bps



GEOMETRY FOR
HF CubeSat MEASUREMENTS

LEOORBIT Miniature HF
TN U™ RECEIVER

Ground HF
Transmitters
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CubeSat Implementation of MinIHFR
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CubeSat Recelver Antennas




CubeSat Payload Guide
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EFVS for PSI

[ Pass

T Pass

e — Pass

EFVS Electric Field Vector Sensor 100 Khz - 16 MHz

Low § _ 14 bit ADC FPGA RAM
= 32 MHz —»
Filter - 34512 Kbyte
14MHz ' Digital Signal
N Processing
Low I 14 bit ADC
TS 32MHz >
Filter - T Memory Microcontroller
14MHz - Controller
Timing
— , P
Low - 14 bit ADC e CAN bus
= 32 MHz —»
Filter > T
14MHz

Spacecraft Power, Timing , CAN bus




Deployable Electric Field
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LP for PSI

LP Langmuir Probe DC — 7.81 KHz

© 0O
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SMILE for PSI

SMILE Small Small Magnetometer in Low-Mass Experiment
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SRC Ultra-Lightweight Antenna

Hanna Rothkeahl, Space Research Centre, Polish Academy of Sciences,
Bartycka 18A, Warsaw, Poland 00-716




SRC Ultra-Lightweight Antenna

DEPLOYED (SGALE 1:00)

STOWED (ScaE 1]

L1 COMNECTOR HEHE COMHECTIK TYFE | @-TV
1 X=8, XR9, ¥RID EMa-I-PALIE0Z 3
S ETH PCLSATE ]

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| R
|
|
|
|
|
|
|
|
| I
| Va ] | | ART
| L | |
i
| / -
| /4 I |
I ¥ ? I h XRID
I " ]l /.f’:r o
| ) rii CHALES LEWSTH — 0.8m I
"‘ | B .
I kY i’ 1T ARDL
I i T
- I
l Ly B ;
I 7 = _ L gn| —=—x
| ke il
I g}_]_f" s —
| i 2
I //
I { _.-" /."/ 455
| il
|
|
|
| woTEs:
I 1. WECHAMICAL INTERFACE
| 1.1 TOTAL WASS — 02108
1.2 SCEE OF EACH ANTEMNA (Le®aH] — 4052738 mm
| 1.3 WAS55 OF BACH AMTEMKA (WITHOUT ELECTROMICS) — CUOISETTR kg
I 1.4 TUBELLAR BO0H MATERKL - EERYLED 25, 20w0.0%3 mm STRIP RELEC-RFa—&E
| 1 WIHENTS ©F METI, (WITH RESPEGT TO G5 MECHAMICAL INTERFACE COMTROLLED DR&WING
I b2 1os tmmy BESIAER TREWH BY FPeROVED | G-TY | BATE | TSEOE
| b = 39 kgord EANE 0 H ﬁ—| : P i
| | | L :
I Space Ressorel Cantre R
I Potit, lcademy of Sclonces ARG
I 00—FLe WaksaW RE—ANT—WT—500




Summary

High Power HF Waves in the lonosphere
— Nonlinear Wave Interactions

— In Situ ES and EM Wave Generation
* High Frequency
 Low Frequency

MiniSat Sensor Platform
— ePOP (2012 Launch)
— 8 Plasma, Neutral and Wave Sensors

PicoSat (CubeSat) Sensors
— NRL Miniature HF Receiver (MiniIHFR)
— 30 Day Lifetime

Nano Sat or MicroSat Sensors
— IRFU PSI
— SRC Antennas
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