CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS

DENNIS PAPADOPOULOS UMCP

ACKNOWLEDGE: C.L.CHANG, J.LEBINSKY AT BAE SYSTEMS XI SHAO, B.ELIASSON, S. SHARMA AND G. MILIKH AT UMCP SUPPORT: MURI/ONR AND BRIOCHE/DARPA PRESENTATION TO HAARP/RESONANCE WORKSHOP NOVEMBER, 8,2011 UMCP

Wave-particle interactions study under controlled wave injection

- Inner RB (1.5<L<2)
- Slot (2<L<3)
- Outer (L>3)

Diagnosed by RBSP ,Resonance, DSX, ePOP

• Use Ionospheric heaters (HF) to inject ULF/ELF/VLF waves in the L-shell that spans the

Ionospheric Heaters HAARP (L≈4.9) Arecibo (L≈1.4) Tromso (L≈5.9) SURA (L≈2.6) Techniques to transform HF to ULF/ELF/VLF frequencies 1.Polar Electrojet Antenna (PEJ) a. Requires an electrojet current in the D/E region (70-90 km)-Restricted to high latitudes

trapped

Bo

b. Can inject frequencies up to 20 kHz [Whistlers and Shear Alfven Waves (SAW)]

- 2. Ionospheric Current Drive (ICD)
 - a. Does not require electrojet

b. Restricted to frequencies below 70 Hz [SAW, EMIC, Magneto-Sonic (MS)]

The Plasma Physics of the PEJ

ELF/VLF ground detection and propagation

Moore et al. GRL 2008

HAARP-DEMETER VLF INJECTION

COURTESY STANFORD UNIVERSITY

- ELF/VLF signals observed in LEO (~700 km) at lateral distances of >400-km from HAARP
- Simultaneous measurement of all six components (3*E*, 3*B*) allows estimation of the Poynting vector
- Total ELF/VLF radiated power estimated to be ~10 to 30 Watts in the range ~100 Hz to 800 Hz.

COURTESY STANFORD UNIVERSITY^{3C3 UT 36}

SAW DEMETER Detection

Frequency .2 Hz

Closest distance 80 km

Detection time 25 sec

Detection distance 150 km

Maximum E 🕚 10 mV/m

1.5 pT on the ground

SEPTEMBER 28, 2008

Ionospheric Current Drive (ICD) Concept

Papadopoulos et al. GRL 2011 Step 1: $\Delta J = \frac{B \times \nabla \delta p}{B^2} \exp(i\omega t)$ **MS Wave** Step 2: E field of MS wave drives Hall current in E-region resulting in secondary antenna resembling PEJ

DOES NOT REQUIRE EJET – CAN BE IMPLEMENTED ANYWHERE AND ANYTIME

Cylindrical Coordinates

Papadopoulos et al. GRL 2011

MS

SAW

10 Hz

Secondary Antenna Current and Ground Field

PoP Exps: PEJ to ICD Transition

ICD PoP Experiments

Papadopoulos et al GRL 2011b

- 10/14-10/21 Magnetometer below 10 nT
- 10/14-10/23 55 hours of VLF/ELF/ULF tests
- 6 hours of VLF ground measurements
 –PEJ operational
- 51 hours of low ELF/ULF (12-44 Hz) ground measurements

ELF detection at Distant Sites

- Distance to Gakona
 - Lake Ozette, WA (W)
 - 1300 mi
 - Hawaii (H)
 - 2900 mi
 - Guam (G)
 - 4800 mi
- Detection under quiet Gakona cond.
- No detection during electrojet days Oct. 22-23

Proof of Concept ICD Experiment – Conducted under DARPA/BRIOCHE

Chang-Lebinsky-Milikh-Papadopoulos

N-S B Field (Gakona NI BF4) - UTC 2010-10-30 06:00:00 to 2010-10-30 06:19:30

Low ELF Observed by Demeter Satellite

2010-11-06, 06:15:00-06:34:30 ELF 11 Hz modulation (O-MZ)

Msonic Wave Injection

Implications of ICD to RB and RBR – Potential Arecibo/RBSP Tests

RBSP

ICD - Implications

Frequency Selection for Protons

ENERGETIC ELECTRON WP INTERACTIONS DUE TO EMIC WAVES

reaching resonance $(1/k_z \rightarrow 0)$

ENHANCED EMIC WAVES DRIFT PATH OF RELATIVISTIC ELECTRONS RING CURRENT DRIFTS

Summers et al., 1998, 2000, 2003

HELIUM BRANCH

Outer Belts

Physics Studies HAARP/Resonance

- Wave-particle interactions in the Radiation Belts – Whistler range
 - Artificially Stimulated Emissions (ASE)
- ULF MHD Study
 - SA ,EMIC and MS wave injection in space. Interactions with trapped electron and ions
 - Excitation of the lonospheric Alfven Resonator (IAR)
 - SA wave (Pc1) triggering

Controlled VLF Wave Injection Artificially Stimulated Emissions (ASE)

Siple Station Antartica – (Stanford – NSF) Helliwell (1973-1987):

L=4.2, 1.5 MW, 42 km length antenna on 2 km thick ice sheet, Inject 3-6 kHz –

Very difficult and inefficient to inject ELF/VLF with ground

ASE – HAARP Tests

Pulse near 1.7 kHz does not; ramps have echoes with no emissions

15 dB/s Amplification & Triggered Emissions

Only the pulse at 1100 Hz is amplified

BAE SYSTEMS

Pc1 Triggered Emissions ?

Spectrum before HAARP ULF Start Experiment – Ambient Noise

Spectrum after HAARP ULF Start Noise Increase by more than 10-20 dB between .7-10 Hz

ULF at Gakona – Power Spectral Density (PSD)

- Frequency spectrum in a moving time window
- Clear Schumann
 resonances at 8, 14, .. Hz
- Signals emerge as freq.
 peaks in sync with HAARP
 ULF operation
- Greatly varying background below 1 Hz

Tromso (L≈5.9) SURA (L≈2.6)

The Future

• Use Ionospheric heaters (HF) to inject ULF/ELF/VLF waves in the L-shell that spans the heater and diagnose it with RBSP, Resonance, DSX, ePOP

Magneto-synchronous

RBSP

Launch May 18, 2012 2 probes, <1500 kg for both 10° inclination, 9 hr orbits ~500 km x 30,600 km

RESONANCE (Russia) Launch ~2012-14, 4-spacecraft Orbit:1800x30,000km, ~63° incl.

DSX (AFRL) Launch ~2012 MEO, wave/particle

RESONANCE (Russia)

Launch ~2012-14, 4-spacecraft Orbit:1800x30,000km, ~63° incl.

- Launch May 18, 2012
- 2 probes, <1500 kg for both
- \sim 10° inclination, 9 hr orbits
- ~ ~ 500 km x 30,600 km

DSX (AFRL)

Launch ~2012 MEO, wave/particle ORBITALS (CSA) Launch 2012-2013 Orbit(?) ~L=2 to L=6

THEMIS (NASA) Launch Feb 17, 2007 5 identical probes (3)

Inner Proton Belt – Accessible from Arecibo

Typical inner belt proton lifetimes:

10 MeV – decades 50 MeV – century No wave activity at SAW and EMIC branches

Inner Proton Belt – Accessible from Arecibo

Typical inner belt proton lifetimes:

10 MeV – decades 50 MeV – century No wave activity at SAW and EMIC branches

Growth & Saturation

Amplitude Effect on Growth

COHERENT GROWTH 20-30 dB

- THRESHOLD
- SIGNAL SATURATION
- TRIGGERED EMISSIONS –
- risers, fallers, hooks
- ENTRAINMENT

TRANSITION TO OSCILLATOR BEHAVIOR