RESONANCE ABSORPTION OF ALFVÉN WAVES AT COMET-SOLAR WIND INTERACTION REGIONS

A. S. Sharma, P. J. Cargill and K. Papadopoulos

Department of Physics and Astronomy, University of Maryland

Abstract. The interaction of the low frequency (10^{-2} Hz) MHD waves, observed upstream of comets, with the structured plasma near the cometary bow wave is examined. It is suggested that the waves undergo resonant absorption due to either ambient density gradients or localized shear in the background magnetic field. The absorption process can give rise to rapid heating of the solar wind protons, in agreement with observations from comet Halley. Since the free energy for the generation of MHD waves came from sublimating cometary ions decelerated (or mass loaded) the solar wind as it approached the comet [e.g. Mendis et al., 1985], the question of whether a bow shock is formed in the flow (as at the earth) has been a controversial issue for many years [Wallis, 1973]. The encounters not only provided data about the nature of the transition region (referred to also as the bow shock or bow wave), but also indicated strong plasma wave activity in its vicinity. The transition structure is clearly complex and quite unlike anything seen at terrestrial or planetary bow shocks; it should be treated as an entity in its own right [e.g. Omidi and Winske, 1987; Hizanidis et al., 1988].

Waves over the wide range of frequencies (~ 10^{-2} to 10^{5} Hz) are detected at both comets [Tsurutani and Smith, 1986a; Grard et al., 1986; Glassmeier et al., 1987] corresponding to a wide range of plasma modes, from low-frequency magnetohydrodynamic (MHD) waves (~ 10^{-2} Hz) to 5 x 10^{5} Hz). These waves are excited by the observed ring and beam distributions of the cometary ions picked-up by the solar wind [e.g. Brinca and Tsurutani, 1988] and are convected downstream by the solar wind into regions of higher density and magnetic field closer to the comet. From a global perspective the density and magnetic field gradients are caused by the slowing of the solar wind due to mass loading. Furthermore localized gradients are caused by the fact that the pick up rate is unsteady. In the presence of global and local gradients the waves encounter resonances at the local upper and lower hybrid, electron and ion cyclotron, and Alfvén frequencies where they can be mode-converted into other modes with shorter wavelengths, resulting in resonance absorption and heating of the solar wind protons. For waves over such a wide range of frequencies, the resonances and the consequent plasma heating is expected to occur at different spatial points in the comet-solar wind interaction region. On a global scale such processes are equivalent to non-local viscosity. Namely, the streaming energy of the solar wind protons is first transferred to pick-up cometary ring distributions, subsequently transformed with a certain efficiency to the plasma waves, which are ultimately reabsorbed (again with certain efficiency) by the streaming protons near the transition region producing local heating. While such processes are undoubtedly occurring in the upstream and transition regions, it is important to determine to what extent they determine the dynamics of the transition region.

A particular class of waves studied by Tsurutani and Smith [1986a,b] are low-frequency, linearly polarized MHD waves with 0(1) upstream from the G-Z bow wave. In the solar wind frame, these waves travel away (upstream) from the comet. As seen by the spacecraft, they are swept toward the comet by the solar wind, and ultimately impinge on the bow wave. Tsurutani and Smith [1986a,b] estimate the total wave energy at comet G-Z as 5 x 10^{4} erg cm^{-3}. Analogous results from comet Halley [Glassmeier et al. 1987] indicate a wave energy content of 2 x 10^{4} ergs and similar energy density to G-Z. These energies represent a significant fraction of the total energy in the comet-solar wind interaction region. In this paper we study the energetics, efficiency and observational consequences of reabsorption of the MHD part of the spectrum by the solar wind protons near the transition region. Absorption of MHD waves in the presence of density and magnetic field gradients has been studied in a variety of other settings [Tataronis and Grossmann, 1973; Chen and Hasegawa, 1974] and is known as resonance absorption. The absorption arises at the location where the frequency of the waves matches the Alfvénic frequency of the plasma and gives rise to strong local plasma heating.
Wave Propagation Near the Cometary Bow Wave

The properties of MHD waves upstream from comet G-Z have been summarized by Tsurutani and Smith [1986a] and Tsurutani et al. [1987]. They found B/B = (1), linear polarization, a strong compressional component (so = (1)) and an angle of propagation (a) with respect to the magnetic field of between 6° and 40° depending on the location of the observations. Similar properties have been found at the Halley encounter [Johnstone et al., 1987] although no explicit angle of propagation appears to have been determined. A variety of possible instabilities involving both cometary ring and beam ion distributions have been invoked to explain these wave properties [e.g. Gary and Winske, 1986; Brinca and Tsurutani, 1988]. Glassmeier et al. [1987] note that at comet Halley, both compressional and transverse magnetic field fluctuations are seen, so it is appropriate to discuss how both kinds of waves interact with the structured medium in the vicinity of a cometary bow shock.

The Alfvén resonance absorption concept was originally developed for arbitrary plasma B (where $B = B/B$), though it has been widely applied to the low B laboratory plasmas such as tokamaks [Chen and Hasegawa, 1974]. The question of the validity of the process in the turbulent cometary plasma is an important one and cannot be readily answered. We shall comment on this issue later in this letter. A compressional (magnetosonic) wave moving inward will be subjected to resonant absorption when $12/B$ [Chen and Hasegawa 1974] and V_0, where V_0 is the upstream Alfvén speed. Assuming that the upstream waves behave as $w = k V_0$, where V_0 is the upstream Alfvén speed, the condition for resonant absorption is then: $\cos \theta = V_0/V_0 = (B/B)(n/n)$, where n is defined earlier. The location of the absorption layer thus depends on both the propagation angle and the ambient plasma structure. For example, if the magnetic field is roughly perpendicular to the comet-sun line, then $B - (n/n)$, for $\theta = 90°$, the density must increase by roughly 20% before resonant absorption can occur. Absorption of more obliquely propagating waves occurs closer to the comet. In the perpendicular case of comet Halley [Neugebauer et al., 1987] the density increases gradually (~30% between 19.00 and 20.00 SCET) as the comet is approached, so that the resonance condition will be satisfied. However, if B increases more slowly than V_0, the resonance condition is not satisfied for a straight field.

In the case of a magnetic field with no gradient the resonance condition can be satisfied with a shear. The data of Neugebauer et al. [1987] suggest that regions of extremely rapid magnetic shear exist. Figure 1 shows the magnetic field data given by Neugebauer et al. [1987: their Figure 2], viz. the field magnitude, solar ecliptic longitude and latitude angles, and the root mean square of the field fluctuations. Clearly there are strong shear layers at $t = 19.69, 19.7$ and 19.38 SCET, with a characteristic length scale of 1000 - 2000 km. In each case, the magnetic field is skewed by $50° - 100°$ both in the ecliptic plane and normal to it. Such large shears will easily satisfy the resonance conditions, given the ambient plasma parameters. These regions of magnetic shear are also well correlated with localized heating of the solar wind protons as shown in Figure 1b [Figure 1 of Neugebauer, et al., 1987], the temperature rising some 30-50%. The origin of these shear layers is unclear. They could be associated with wave propagation near the cometary bow wave.
Alfvén Wave Heating

We now discuss the applications of this heating process to the localized solar wind heating observed by Neugebauer et al. [1987; see previous Section]. The heating rate due to Landau damping of the KAW is [Hasegawa and Chen, 1976]:

\[\frac{dT_i}{dt} = \frac{\omega_0}{2} \beta_i \left(\frac{2\pi}{\beta_i} \right)^2 f(\lambda) \left(\frac{6B^2}{B} \right) \]

(1)

where \(\delta_i = 2 \pi^2 \beta_i^2 \exp(-1/\beta_i) \), \(\lambda_i = k_i \rho_i \), \(\rho_i = v_i / f_i \), \(v_i = \gamma_i m_i / \gamma_i \), and the function \(f(\lambda) \) describes the damping due to the finite Larmor radius effect. Note that following Hasegawa and Chen [1976] we have ignored coupling to the fast (magnetosonic) wave. If this coupling is included the contribution from the fast mode damping would increase the above heating rate. In Eq. (1) the product \(\delta_i f(\lambda) \) is a weak function of the thermal energy. For \(T_i \sim T_i \), we can define a heating time scale \(T_H \) due to the wave heating:

\[\frac{1}{T_H} = \frac{1}{2} \frac{\delta_i f(\lambda_i) (6B^2)}{B} \]

(2)

In a time interval \(\delta t \) the increment in \(T_i \) is \(\delta T_i = T_i \delta t / T_H \). Typical parameters are \(\omega_0 \approx 1 \times 10^2 \) s \(^{-1} \) and \(T_i / T_H = 1 \). Using the expression for \(f(\lambda) \) given by Hasegawa and Chen [1976] with a modification for finite \(\beta_i \), we find that for \(\beta_i = 0.5 \), \(f(\lambda) \) has values between \(0.26 \) and \(0.38 \) for \(\lambda_i \) between \(21 \) and \(5 \), with the maximum at \(\lambda_i = 4 \). Though the fluctuations have \(\delta B / B \approx 0(1) \) on the whole, the observations show that it changes locally in the range \(0.5 - 1 \). For \(\beta_i = 0.5 \) and \(\delta B / B \approx 0.5 - 1 \), we find \(T_H = 60 - 350 \) s. Let us now examine the localized heating events observed by Neugebauer, et al. [1987], as shown in Figure 1. Between 1938 - 1939 SCET, the solar wind proton thermal velocity increases from 70 km/s to 80 km/s. This implies \(ST_i / T_H = 0.3 \) so, with \(\delta B / B = 0.7 \), the heating time calculated from Eq. (2) is \(\sim 40 \) s and this corresponds to a heating length of 2000 km. The velocity of the absorption region relative to the bow wave is \(v_\perp = v_A \cos \alpha \) where \(v_\perp \) is the normal component of the solar wind velocity, and \(\alpha \) is the angle between the wave propagation and the bow wave normal (chosen as \(\pi / 4 \)). We note that the waves are observed to move back into the solar wind; away from the comet in the solar wind reference frame. In the short event between 1932 - 1932.5 SCET the solar wind proton thermal velocity increases from 70 km/s to 25 km/s. The computed heating length in this case is \(\sim 1000 \) km. Lastly between 1923.5 - 1924 SCET the velocity increases from 60 km/s - 70 km/s and the computed heating length is \(\sim 4000 \) km. Thus the observed heating lengths are 1400-2000 km [Neugebauer et al., 1987] in each case compare quite well and it seems that these events could be attributed to the resonance absorption of the MHD waves generated upstream.

We note that there are locations of density compression without magnetic shear [e.g. 19.26 SCET: Figure 1 of Neugebauer, et al. 1987] where there is no proton heating, whereas at 19.38 SCET there is shear and proton heating before a density compression. Hence a predictive result of this paper is a connection between magnetic shear and proton heating. This heating mechanism will initially give bulk heating in the parallel direction, but anisotropy driven instabilities may subsequently transfer the energy to the perpendicular direction. Also, the observed turbulence will deflect the particles during the interaction with the parallel electric field. However the interaction times, as seen above, are short compared to the gyroperiod and hence the turbulence will not have a strong effect on this heating process. The Alfvén waves will also lead to alpha particle heating, though at a rate slower than the protons. The observed alpha particle heating [Neugebauer, et al. 1987] shows strong correlation with gradients in the magnetic field. However, the alpha particle heating is more complex than that of the protons and various processes such as heating by parametric coupling to the ion-ion hybrid resonance, transit time magnetic pumping, etc. will play an important role. It may be noted that the proton heating events cannot be due to adiabatic heating (Omid and Winske, 1987) as they correspond to density rarefactions, rather than the expected compressions in an adiabatic process. The Alfvén wave heating will lead to a depletion in the power spectrum of the low frequency waves. However the continual mass loading will rapidly replenish the power (within ~ 120 secs), so that this decay may not be observable.

We also suggest that the proton heating is not a steady state process occurring at one point in space but moves around in a quasi-random fashion, depending upon where the resonance condition is satisfied. This would produce a series of localized "hot spots" as, indeed, is observed by Neugebauer et al. [1987]. An analysis of the non-local heating due to a series of localized absorption regions is beyond the scope of the present letter, but could be amenable to a statistical treatment.

Discussion

The conversion of solar wind kinetic energy to plasma thermal energy, the principal net process in any planetary bow shock or transition region can hence proceed in a comet by a sequence of different mechanisms. For example, in the present paper, we have discussed a 3-step non-local process to describe how solar wind protons are heated. First, ion beams or rings interact with the solar wind, low frequency MHD waves are generated which subsequently mode convert to kinetic Alfvén waves and then damp on the protons. A similar example was discussed by [Hizanidis et al. 1988] involving lower hybrid waves damping their energy to heat the cometary pick-up ions. We stress that the energy transfer process goes through many non-local paths as the plasma goes from pick-up to heating. These arguments serve to emphasize the inappropriateness of using the word shock. In a
shock the free energy which drives the processes that dissipate the upstream directed energy into random energy downstream is self-generated. In supercritical quasi-perpendicular shocks, reflection of a fraction of the upstream ions and their eventual thermalization downstream keeps the required pressure balance as given by the Hugoniot conditions [Leroy, et al., 1982]. Similarly in resistive critical shocks, the free energy source, which in this case is the current associated with the magnetic field gradient at the front [Mellot and Greenstadt, 1984] is driven by the steepening process without interference by extraneous sources. In the cometary case the free energy available for the thermalization is not generated by the steepening process but by the presence of a source external to the solar wind, the cometary ions. If we view the presence of the comet and its associated gas outflow as the piston which drives a shock ahead of it, analogous to the earth’s magnetosphere driving the bow shock, then one can conclude that the piston contamination of the “shock” region is the main cause that creates the free energy available for thermalization downstream. It cannot, therefore, be properly called a shock, since the free energy is not self-consistently created by the steepening of the non-linear wave pulse driven by the piston, but by what is essentially piston leakage.

In summary, we have outlined how the observed low-frequency hydromagnetic waves seen upstream of comets can be damped by resonant absorption at the cometary bow wave. This could explain the localized heating of the solar wind protons seen by Neugebauer et al. [1987], and represents an important example of the non-local dissipative phenomenon present at comets. We also suggest that the proton heating may occur in a non-steady fashion depending upon the location of the resonance regions. A comprehensive picture of the interaction including the role of the lower hybrid waves as well as other modes is in progress and will be published elsewhere.

Acknowledgements. This work was supported by NASA Grant NAGW-1037. We thank one of the referees for helpful suggestions.

References

Acknowledgements. This work was supported by NASA Grant NAGW-1037. We thank one of the referees for helpful suggestions.

References

Acknowledgements. This work was supported by NASA Grant NAGW-1037. We thank one of the referees for helpful suggestions.

References

