PHYS 270 – SUPPL. #6

DENNIS PAPADOPOULOS FEBRUARY 15, 2011 CHAPTER 35

REVIEW FROM CHAPTER 34

)

$$P = \frac{dU_L}{dt} = I\Delta V_L = -IL\frac{dI}{dt}$$
$$U_L = L\int_0^I IdI = \frac{1}{2}LI^2$$

$$U_L = (Al)(B^2/2\mu_o)$$

LC CIRCUIT

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Mass on a Spring

What is Motion?

$$F = -kx = ma = m\frac{d^2x}{dt^2}$$

$$m\frac{d^2x}{dt^2} + kx = 0$$

Simple Harmonic Motion $x(t) = x_0 \cos(\omega_0 t + \phi)$

*x*₀: Amplitude of Motion*φ*: Phase (time offset)

$$\omega_0 = \sqrt{\frac{k}{m}} =$$
Angular frequency

Analog: LC Circuit

Mass doesn't like to accelerate

Kinetic energy associated with motion

$$F = ma = m\frac{dv}{dt} = m\frac{d^2x}{dt^2}; \quad E = \frac{1}{2}mv^2$$

Inductor doesn't like to have current change

Energy associated with current

$$\varepsilon = -L\frac{dI}{dt} = -L\frac{d^2q}{dt^2}; \quad E = \frac{1}{2}LI^2$$

LC Circuit

- Set up the circuit above with capacitor, inductor, resistor, and battery.
- 2. Let the capacitor become fully charged.
- 3. Throw the switch from a to b
- 4. What happens?

LC Circuit

It undergoes simple harmonic motion, just like a mass on a spring, with trade-off between charge on capacitor (Spring) and current in inductor (Mass)

Analog: LC Circuit

Spring doesn't like to be compressed/extended Potential energy associated with compression

('

$$F = -kx; \quad E = \frac{1}{2}kx^2$$

Capacitor doesn't like to be charged (+ or -) Energy associated with stored charge

$$\varepsilon = \frac{1}{C}q; \quad E = \frac{1}{2}\frac{1}{C}q^2$$

$$F \to \varepsilon; x \to q; v \to I; m \to L; k \to C^{-1}$$

Simple Harmonic Motion $Q(t) = Q_0 \cos(\omega_0 t + \phi) \qquad \omega_0 = \frac{1}{\sqrt{LC}}$

Q₀: Amplitude of Charge Oscillation*φ*: Phase (time offset)

Chapter 35. Electromagnetic Fields and Waves

Topics:

- *E* or *B*? It Depends on Your Perspective
- The Field Laws Thus Far
- The Displacement Current
- Maxwell's Equations
- Electromagnetic Waves
- Properties of Electromagnetic Waves
- Polarization

OBSERVER's RELATIVE STATE OF MOTION

Both agree on no net force on the particle

How to reconcile observations involving forces that depend on velocity

GALILEAN RELATIVITY

$$x = x' + Vt$$

$$y = y'$$

$$v = dx/dt = dx'/dt + V = v' + V$$

$$a = dv/dt = dv'/dt = a'$$

$$F = F'$$

Experimenters in all inertial frames agree about the forces acting on bodies including charges

OBSERVER's RELATIVE STATE OF MOTION

Bill sets a B field in his frame and observes the motion (force) on the test charge q given by

 $\vec{F}_B = q\vec{v} \times \vec{B} = qvB$ up

However Sharon sees a zero magnetic force since v=0

Physics requires that F=F'

The only option is the presence of an electric field in Sharon's frame

$$q\vec{E}' + q\vec{v}' \times \vec{B}' = q\vec{E} + q\vec{v} \times \vec{E}$$

Sharon(S')v' = 0
Bill(S)E = 0
 $\vec{E}' = \vec{v} \times \vec{B}$

OBSERVER's RELATIVE STATE OF MOTION

Add an electric field E in Bill's frame

 $\vec{F}_{B} = q\vec{E} + q\vec{v} \times \vec{B}$ Sharon's frame S' $\vec{F}' = q\vec{E}'$ $\vec{F}' = \vec{F} \implies \vec{E}' = \vec{E} + \vec{v} \times \vec{B}$

$$\vec{E}' = \vec{E} + \vec{v} \times \vec{B}$$

E or B? It Depends on Your Perspective

Whether a field is seen as "electric" or "magnetic" depends on the motion of the reference frame relative to the sources of the field.

FROM S TO S'

 $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

 \vec{E}

 \vec{B}

Bill creates an E and B

 $\vec{F}' = \vec{F}, \vec{E}' = \vec{E} + \vec{V} \times \vec{B}$

E FIELD IN FRAME S' FROM E AND B FIELDS IN FRAME S

HOW DO B FIELDS TRANSFORM

$$\vec{B}' = -\varepsilon_o \mu_o (\vec{V} \times \vec{E})$$
$$\vec{B}' = \vec{B} - \varepsilon_o \mu_o (\vec{V} \times \vec{E})$$
$$c = 1/\sqrt{\varepsilon_o \mu_o}$$

Bill's frame S at point r

$$\vec{E}(r) = (1/4\pi\varepsilon_0)(q/r^2)\hat{r}$$
$$B(r) = 0$$

Sharon's frame S': Charge moves and creates a B-field as well as an E-field. \rightarrow , \rightarrow

$$\vec{E}' = \vec{E}$$

 $Biot - Sa \operatorname{var} t$

$$\vec{B}'(r) = (\mu_o / 4\pi)q \frac{-\vec{v} \times \hat{r}}{r^2} = -(\mu_o \varepsilon_o)\vec{v} \times [(1/4\pi\varepsilon_o)\frac{q}{r^2}\hat{r}] = -(\mu_o \varepsilon_o)\vec{v} \times \vec{E}$$

Biot-Savart is nothing more than the electric field of a stationary charge transformed into a moving frame

FROM S' TO S

E or B? It Depends on Your Perspective

The Galilean field transformation equations are

$$\vec{E}' = \vec{E} + \vec{V} \times \vec{B} \qquad \vec{E} = \vec{E}' - \vec{V} \times \vec{B}'$$

$$\vec{B}' = \vec{B} - \frac{1}{c^2} \vec{V} \times \vec{E} \qquad \vec{B} = \vec{B}' + \frac{1}{c^2} \vec{V} \times \vec{E}'$$

where *V* is the velocity of frame S' relative to frame S and where the fields are measured *at the same point in space* by experimenters *at rest* in each reference frame.

NOTE: These equations are only valid if $V \ll c$.

How correct are the Galilean Transformations

$$\vec{E}' = \vec{E} + \vec{V} \times \vec{B} \qquad \vec{E} = \vec{E}' - \vec{V} \times \vec{B}'$$

$$\vec{B}' = \vec{B} - \frac{1}{c^2} \vec{V} \times \vec{E} \qquad \vec{B} = \vec{B}' + \frac{1}{c^2} \vec{V} \times \vec{E}'$$

Step 1. Find fields (E_1, B_1) due to charge q_1 at the position of q_2 in S-frame.

Step 2: Use Galilean transformations to find fields (E_1', B_1') in S'-frame.

Step 3 : Compute directly by Cb-law E_1 ' in S'-frame.

Step 4 : Compare the results and show that they are consistent only if $(V/c)^2 << 1$

Faraday's Law Using Transformaions

(a) Laboratory frame S

(Flux of E through a closed surface) = (Charge inside)/ ϵ_0

(Line integral of *E* around a loop) = $-\frac{d}{dt}$ (Flux of *B* through the loop)

(Flux of **B** through a closed surface) = 0

 \mathcal{J} (Integral of **B** around a loop) = (Current through the loop) \mathcal{J}_{AQ_O}

2

