PHYS 270 – SUPPL. #2

DENNIS PAPADOPOULOS FEB. 1, 2011

OVERVIEW

- COMPARE E-FIELD TO B-FIELD PROPERTIES

 FIELDS, FIELD LINES, DIPOLES
- COMPUTE B-FIELDS DUE TO CURRENTS
 - BIOT-SAVART, LONG WIRES, CURRENT LOOPS, SOLENOIDS
 - AMPERE's LAW EQUIVALENCE TO GAUSS's LAW
- MAGNETIC FORCES ON MOVING CHARGES
- MAGNETIC PROPERTIES OF MATTER MRI

LAST TIME

BIOT-SAVART LAW

FIGURE 33.6 The magnetic field of a

$\vec{B}_{\text{point charge}} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$

(magnetic field of a point charge)

Direction by RHS rule

Field due to a long wire

$$\Delta \vec{B}_{\Delta z}(\vec{r}) = k_M \frac{I\Delta z(\hat{e}_z \times \vec{r})}{r^3} = k_M \frac{I\Delta z[\hat{e}_z \times (\hat{e}_\rho \rho + \hat{e}_z z)}{r^3} = k_M \frac{I\Delta z\rho(\hat{e}_z \times \hat{e}_\rho)]}{r^3} = k_M \frac{I\Delta z\rho\hat{e}_\theta}{r^3}$$

$$\vec{B}(\vec{r}) = \hat{e}_{\theta}(k_{M}I\rho)\int_{-l}^{l} \frac{dz}{(\rho^{2} + z^{2})^{3/2}} = \hat{e}_{\theta}(k_{M}I\rho)\left[\frac{z}{\rho^{2}(\rho^{2} + z^{2})^{1/2}}\right]_{-l}^{l}$$

$$l \to \infty, \rho << l$$

$$\vec{B}(\vec{r}) = \hat{e}_{\theta}k_{M}(2I/\rho)$$

Biot-Savart: Circular Arc-> Circle

For 1 and 3

 $d\vec{s} \ parallel \text{ to } \hat{r} \rightarrow d\vec{s} \times \hat{r} = 0$ $For 2 \rightarrow d\vec{s} \times \hat{r} = ds \text{ direction int o the } page$ $ds = Rd\theta$ $\left|\vec{B}\right| = \frac{\mu_o}{4\pi} I \int_0^\theta \frac{Rd\theta}{R^2} = \frac{\mu_o}{4\pi} \frac{I}{R} \theta$ $Circle: \theta \rightarrow 2\pi$ $\left|\vec{B}\right| = \frac{\mu_o}{2R} I$

B field of a current loop

Consider a coil with radius R and current I

Find the magnetic field B at the center (P)

1) Think about it:

- Legs contribute nothing *I* parallel to *r*
- · Ring makes field into page
- 2) Choose a ds
- 3) Pick your coordinates
- 4) Write Biot-Savart

Current element of length ds carrying current I produces a magnetic field:

B field of a current loop

Applying the Biot-Savart Law:
On-axis of circular loop

$$d\overline{B} = \underbrace{M_{0}}_{\overline{4}\overline{11}} \quad \overline{1} \underbrace{d\overline{\xi} \times \widehat{f}}_{\overline{r^{2}}}$$
When we integrate, $B_{y} \rightarrow 0 + all \times -Components$

$$ddd$$

Magnetic Dipole - Example 33.5

FIGURE 33.16 Calculating the magnetic field of a current loop.

$$\begin{split} \left| \Delta \overline{s}_{k} \times \hat{r} \right| &= \Delta s \\ (B_{k})_{z} &= \frac{\mu_{o}}{4\pi} \frac{I\Delta s}{r^{2}} \cos \phi \\ \cos \phi &= R/r \\ (B_{k})_{z} &= \frac{\mu_{o}}{4\pi} \frac{IR\Delta s}{(z^{2} + R^{2})^{3/2}} \\ For z >> R \\ (B_{k})_{z} &\approx \frac{\mu_{o}}{4\pi} \frac{IR\Delta s}{z^{3}} \\ B_{loop} &\approx \frac{\mu_{o}}{4\pi} \frac{IR\Delta s}{z^{3}} = \frac{\mu_{o}}{2} \frac{IR^{2}}{z^{3}} \end{split}$$

Compute on axis B for z>>R

 B_k perpendicular to Δs_k and r. The ρ -component of of B_k is cancelled by the ρ component of B_j . Same for all anti-diametric segments. We are thus left by only a z-component. Need to compute only $(B_k)_z = B_k \cos \phi$.

Magnetic Dipole moment

$$\begin{split} B_{loop} &\approx \frac{\mu_o}{4\pi} \frac{2I\pi R^2}{z^3} = \frac{\mu_o}{4\pi} \frac{2IA}{z^3} = \frac{\mu_o}{4\pi} \frac{2I\mu}{z^3} \\ \vec{\mu} &\equiv \vec{A}I \\ \vec{E}_{dipole} &= \frac{1}{4\pi\varepsilon_o} \frac{2\vec{p}}{z^3} \end{split}$$

MAGNETIC DIPOLE

FIGURE 33.18 The magnetic field of a current loop.

(a) Cross section through the current loop (b) The current loop seen from the right

(c) A photo of iron fillings

The magnetic dipole moment is perpendicular to the loop, in the direction of the right-hand rule. The magnitude of $\vec{\mu}$ is *AI*.

FIGURE 33.19 A current loop has magnetic poles and generates the same magnetic field as a flat permanent magnet.

NOTE > The magnetic field *inside* a permanent magnet differs from the magnetic field at the center of a current loop. Only the exterior field of a magnet matches the field of a current loop.

LOOP – FLAT MAGNET EQUIVALENCE

Investigating current loops

A current loop hung by a thread aligns itself with the magnetic field pointing north.

The north pole of a permanent magnet repels the side of a current loop from which the magnetic field is emerging.

The south pole of a permanent magnet attracts the side of a current loop from which the magnetic field is emerging.

A FLAT PERMANENT PERMANENT MAGNET AND A CURRENT LOOP (ELECTROMAGNET) GENERATE THE SAME MAGNETIC FIELD THE FIELD OF A DIPOLE

EARTH's FIELD – LOOP OR NOT ?

$$\vec{\mu}_{earth} = e_z 6.4 \times 10^{21} A - m^2$$

Ampere's Law

Gauss's Law – The Idea

$$lux = \int \vec{E} \cdot d\vec{S}$$

F

The total "flux" of field lines penetrating any of these surfaces is the same and depends only on the amount of charge inside

GAUSS's LAW

$$\Phi_{\rm e} = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\rm in}}{\epsilon_0}$$

Ampere's Law: The Idea

In order to have a B field around a loop, there must be current punching through the loop

LINE INEGRALS – AMPERE's LAW

FIGURE 33.21 Integrating along a line from i to f.

$$l = \sum_{k} \Delta s_k \to \int_{i}^{f} ds$$

$$\sum_{k} \vec{B}_{k} \cdot \Delta \vec{s}_{k} \rightarrow \int_{i}^{i} \vec{B} \cdot d\vec{s} = \text{ the line integral of } \vec{B} \text{ from i to f}$$

FIGURE 33.22 Integrating \vec{B} along a line from i to f.

length l of the line.

The line can be divided into many small

segments. The sum of all the Δs 's is the

The line passes through a magnetic field.

Displacement of segment k

TACTICS BOX 33.3 Evaluating line integrals

• If \vec{B} is everywhere perpendicular to a line, the line integral of \vec{B} is

$$\int_{i}^{1} \vec{B} \cdot d\vec{s} = 0$$

2 If \vec{B} is everywhere tangent to a line of length *l* and has the same magnitude *B* at every point, then

$$\int_{i}^{f} \vec{B} \cdot d\vec{s} = Bl$$

Ampere's Law: The Equation

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$$

Area enclosed

by the path

Closed path made

up of segments of length Δs

The line integral is around any closed contour bounding an open surface *S*.

I_{enc} is current through S:

$$I_{enc} = \int_{S} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$$

Biot-Savart vs. Ampere

Biot- Savart Law	$\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2}$	general current source ex: finite wire wire loop
Ampere's law	$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$	symmetric current source ex: infinite wire infinite current sheet

Applying Ampere's Law

- 1. Identify regions in which to calculate B field Get B direction by right hand rule
- 2. Choose Amperian Loops S: Symmetry B is 0 or constant on the loop!
- 3. Calculate $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$
- 4. Calculate current enclosed by loop S
- 5. Apply Ampere's Law to solve for B

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$$

Always True, Occasionally Useful

Like Gauss's Law, Ampere's Law is always true However, it is only useful for calculation in certain specific situations, involving highly symmetric currents. Here are examples...

AMPERE's LAW

FIGURE 33.23 Integrating the magnetic field around a wire.

 \vec{B} is everywhere tangent to the integration path and has constant magnitude.

$$(2\pi d)B_{\theta} = \mu_{o}I$$
$$B_{\theta} = \mu_{o}I/2\pi d$$

Example: Infinite Wire

A cylindrical conductor has radius R and a uniform current density with total current I

Find B everywhere

Two regions: (1) outside wire $(r \ge R)$ (2) inside wire (r < R)

Ampere's Law Example: Infinite Wire

I Penetrates

Example: Wire of Radius R

Region 1: Outside wire $(r \ge R)$ Cylindrical symmetry \rightarrow **Amperian Circle B-field counterclockwise** $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = B \oint d\vec{\mathbf{s}} = B \left(2\pi r \right)$ $=\mu_0 I_{enc} = \mu_0 I$ $\vec{\mathbf{B}} = \frac{\mu_0 I}{2\pi r}$ counterclockwise

Example: Wire of Radius R

Region 2: Inside wire (r < R)

 $\vec{\mathbf{B}} = \frac{\mu_0 I r}{2\pi R^2}$ counterclockwise

Could also say:
$$J = \frac{I}{A} = \frac{I}{\pi R^2}$$
; $I_{enc} = JA_{enc} = \frac{I}{\pi R^2} (\pi r^2)$

OVERALL FIELD

 $r \le R$ $2\pi r B(r) = \mu_o I(r^2 / R^2)$ $B(r) = (\mu_o / 2\pi) I(r / R^2)$ $r \ge R$ $2\pi r B(r) = \mu_o I$ $B(r) = (\mu_o / 2\pi)(I/r)$

Applying Ampere's Law

In Choosing Amperian Loop:

- Study & Follow Symmetry
- Determine Field Directions First
- Think About Where Field is Zero
- Loop Must
 - Be Parallel to (Constant) Desired Field
 - Be Perpendicular to Unknown Fields
 - Or Be Located in Zero Field

SOLENOIDS

FIGURE 33.27 A solenoid.

FIGURE 33.29 The magnetic field of a solenoid.

(a) A short solenoid

The magnetic field is uniform inside this section of an ideal, infinitely long solenoid. The magnetic field outside the solenoid is zero.

What is a solenoid – A device that creates a uniform magnetic field inside and zero outside (in both cases almost uniform and almost zero) Who needs it . Electronic devices, MRI machines, Fusion machines etc

How to make a solenoid

Magnetic Field of Ideal Solenoid

P18-42

B FIELD INSIDE A SOLENOID

(b) $\vec{B} = \vec{0}$ $\vec{B} = \vec{0}$ $\vec{B} = \vec{0}$

The magnetic field is uniform inside this section of an ideal, infinitely long solenoid. The magnetic field outside the solenoid is zero.

$$\oint \vec{B} \cdot d\vec{s} = Bl = \mu_0 NI$$

uniform magnetic field inside a solenoid is

 $B_{\rm solenoid} = \frac{\mu_0 NI}{l} = \mu_0 nI$

FIGURE 33.30 A closed path inside and outside an ideal solenoid.

 \vec{B} is tangent to the integration path along the bottom edge.

n is turns per unit length (e.g. per meter)