PHYS 270-SPRING 2011
Dennis Papadopoulos

LECTURE \# 24

WAVE PACKETS
UNCERTAINTY
CHAPTER 40

The word "particle" in the phrase "wave-particle duality" suggests that this wave is somewhat localized.

Photon energy

$$
\mathrm{E}=\mathrm{hv}
$$

explains the experiment and shows that light behaves like particles.

How do we describe this mathematically?
...or this

...or this

How do we describe this mathematically?

Interefering waves, generally...

$$
\begin{aligned}
& y=y_{1}+y_{2}=A \cos \left(k_{1} x-\omega_{1} t\right)+A \cos \left(k_{2} x-\omega_{2} t\right) \\
& \Downarrow
\end{aligned}
$$

$$
y=2 A \cos \frac{1}{2}\left\{\left(k_{2}-k_{1}\right) x-\left(\omega_{2}-\omega_{1}\right) t\right\} \cdot \cos \frac{1}{2}\left\{\left(k_{1}+k_{2}\right) x-\left(\omega_{1}+\omega_{2}\right) t\right\}
$$

Can be interpreted as a sinusoidal envelope: $\quad 2 A \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)$
Modulating a high frequency wave within the envelope: $\cos \left[\frac{1}{2}\left(k_{1}+k_{2}\right) x-\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) t\right]$

$$
\begin{aligned}
& y=y_{1}+y_{2}=A \cos \left(k_{1} x-\omega_{1} t\right)+A \cos \left(k_{2} x-\omega_{2} t\right) \\
& \Downarrow
\end{aligned}
$$

$$
\left.y=2 A \cos \frac{1}{2}\left\{\left(k_{2}-k_{1}\right) x-\left(\omega_{2}-\omega_{1}\right)\right\}\right\} \cdot \cos \frac{1}{2}\left\{\left(k_{1}+k_{2}\right) x-\left(\omega_{1}+\omega_{2}\right) k\right\}
$$

$$
y=2 A \cos \frac{1}{2}\left\{\left(\omega_{2}-\omega_{1}\right) t\right\} \bullet \cos \frac{1}{2}\left\{\left(\omega_{1}+\omega_{2}\right) t\right\}
$$

$$
\mathrm{A}=1 / 2, \mathrm{y}=\mathrm{y}_{1} \mathrm{y}_{2}
$$

$$
\omega_{1}=1.1
$$

$$
\omega_{2}=1
$$

$$
y_{1}=\cos \frac{1}{2}\left\{\left(\omega_{1}+\omega_{2}\right) t\right\}
$$

$$
y_{2}=\cos \frac{1}{2}\left\{\left(\omega_{1}-\omega_{2}\right) t\right\}
$$

$$
\begin{aligned}
& \Delta \omega \Delta t / 2 \approx \pi \\
& 2 \pi \Delta f \Delta t \approx 2 \pi \\
& \Delta f \Delta t \approx 1
\end{aligned}
$$

© 2005 Brooks/Cole - Thomson
At constant value of x
$2 A \cos (\Delta \omega t / 2)=\quad 2 \operatorname{ses}\left(\frac{\Delta\left(\frac{\Delta x}{2} x-\frac{\Delta \omega_{t}}{2}\right)}{}\right.$
$=2 A \cos (\pi \Delta f t)$
$\pi \Delta f \Delta t=\pi$
$\Delta f \Delta t=1$

Fig. 5-18, p. 165

Look in space at any instant of time

$(1 / 2) \Delta k \Delta x=\pi$

Fig. 5-19, p. 166

Figure 40.14 A single wave packet is the superposition of many component waves of similar wavelength and frequency.

Take many close frequencies instead of two close frequencies

Fig. 5-23, p. 172

Bandwidth

$\Delta f \Delta t \approx 1$

Wave Packets

Suppose a single nonrepeating wave packet of duration Δt is created by the superposition of many waves that span a range of frequencies Δf.
Fourier analysis shows that for any wave packet

$$
\Delta f \Delta t \approx 1
$$

We have not given a precise definition of Δt and Δf for a general wave packet.
The quantity Δt is "about how long the wave packet lasts," while Δ f is "about the range of frequencies needing to be superimposed to produce this wave packet."

(c) 2005 Brooks/Cole - Thomson

Fig. 5-23, p. 172

Fig. 6.7 Wave packet with phase velocity twice the group velocity. The arrow travels at the phase velocity, following a point of constant phase for the domi nant wavelength. The cross travels at the group velocity with the packet as a whole.

Group velocity

Fig. 5-17, p. 164

FIGURE 40.12 History graph of a wave packet with duration Δt.

Wave packet duration Δt

The wave packet is localized, a particle-like characteristic.

FIGURE 40.16 Two wave packets with different Δt.
(a)
$\Delta f \Delta t>1$

This wave packet has a large frequency uncertainty Δf.

This wave packet has a small frequency uncertainty Δf.

Which of these particles, A or B, can you locate more precisely?

A. A
B. B
C. Both can be located with same precision.

Which of these particles, A or B, can you locate more precisely?

A. A
B. B
C. Both can be located with same precision.
$\Delta x=v \Delta t=(p / m) \Delta t$
$\Delta t=(m / p) \Delta x$
$f=v / \lambda=\frac{p / m}{h / p}=\frac{p^{2}}{h m}$
$\Delta f=2 p \Delta p / h m$
$\Delta f \Delta t=(2 p \Delta p / h m)(m \Delta x / p)=\frac{2}{h} \Delta x \Delta o$
$\Delta f \Delta t>1$
FIGURE 40.17 A snapshot graph of a wave packet.

Wave packet length Δx
$\Delta x \Delta p \geq h / 2$

UP Our knowledge about particle properties in inherently uncertain

Electron localized in the hole and indivisible. Clearly goes through slit \#1 or slit \#2
counts/min

Fig. 5-30, p. 182

Accumulated counts/min

Watching Electrons

Need to measure the position of the electron with accuracy $\Delta y<D$
 particles
 electron
minima occur at $D \sin \theta=\lambda / 2$
electron wavelength: $\lambda=h / p$
for small θ :
$\sin \theta \approx \theta=\frac{h}{2 p D} \approx \frac{p_{y}}{p_{x}}$ electron

To avoid destroying the interference pattern

$$
\begin{aligned}
& \Delta p_{y} / p_{x} \ll \theta \approx h / 2 p_{x} D \\
& \Delta p_{y} \ll h / 2 D
\end{aligned}
$$

Since the same Δp_{y} applies to the detecting photon we need

$$
\Delta p_{y} \Delta y<h / 2
$$

Black box for recording direction of \longrightarrow ? photon's kick. A photon emerging from the top slif will kick the screen down. while a photon emenging from the bottom slit will kick the screen up We can thus decide from which slit the photon has emerged, but this measumement destroys the interference patsern and hence, any knowledge of the photon's position. cto 5Creen

FIGURE 3 Two-slit experiment with springs.

Fig. 1.7 A diagram of a double slit experiment with bullets. The experimental set-up is shown on the left of the figure and the results of three different experiments indicated on the right. We have shown bullets that pass through slit 1 as open circles and bullets through slit 2 as black circles. The column labelled P_{1} shows the distribution of bullets arriving at the detector boxes when slit 2 is closed and
only slit 1 is open. Column P_{2} shows a similar distribution obtained with slit 1 closed and slit 2 open. As can be seen, the maximum number of bullets appears in the boxes directly in line with the slit that is left open. The result obtained with both slits open is shown in the column labelled P_{12}. It is now a matter of chance through which slit a bullet will come and this is shown by the scrambled mixture
of black and white bullets
collected in each box. The
important point to notice is that the total obtained in each box when both slits are open is just the sum of the numbers obtained when only one or other of the slits is open. This is obvious in the case of bullets since we know that bullets must pass through one of the slits to reach the
detector boxes.

Fig. 1.9 A diagram of a doubleslit experiment with water waves. The detectors are a line of small floating buoys whose jiggling up and down provides a measure of the wave energy. The wave crests spreading out from each slit are shown in the figure and can be compared with fig. 1.8. The column labelled I_{1} shows the smoothly varying
wave intensity obtained when only gap 1 is open. Notice that this is very similar to the pattern P_{1} obtained with bullets in fig. 1.7 with only slit 1 open. Again it is largest at the detector directly in line with gap 1 and the source. The second column shows that a similar pattern, I_{2}, is obtained when gap 1 is closed and gap 2 is open. The final

Wave intensity at each buoy

column, I_{12}, shows the wave intensity pattern obtained with both slits open. It is dramatically different from the pattern obtained for bullets with both slits open. It is not equal to the sum of the patterns I_{1} and I_{2} obtained with one of the gaps closed. This rapidly varying intensity curve is called an interference pattern.

Number of electrons arriving at each detector (in a fixed time)

Fig. 1.11 A diagram of a double-slit experiment with electrons. Electrons always arrive with a flash at the phosphor detector at one point in the same way that bullets always end up in just one of the detector boxes rather than the energy being spread out, as in a wave. The column marked P_{1} shows the pattern obtained with only slit 1 open. Electrons that have gone through slit 1 are represented as open circles, like the bullets of fig. 1.7. Column
P_{2} shows the same thing with only slit 2 open and the electrons that have gone through slit 2 indicated by black circles. These two patterns are exactly the same as those obtained with bullets. The difference lies in the column headed P_{12}, which shows the pattern obtained for electrons when both slits are open. This is just the interference pattern obtained with water waves and requires some kind of wave motion arising from each slit as indicated on the figure. It is not
the sum of P_{1} and P_{2} and so we cannot say which slit any electron goes through. We have indicated this lack of knowledge by drawing the electrons, which still arrive like bullets, as half white and half black circles. This fact, that quantum objects such as electrons possess attributes of both wave and particle motion but behave like neither, is the central mystery of quantum mechanics.

Fig. 2.3 Sketch of the experimental set-up required to observe through which slit the electron passes in a double-slit experiment. Light, in the form of photons, is directed at the slits. In the figure a photon, represented as a small bullet, has hit an electron behind slit 1. The electron is disturbed slightly in its motion and the scattered
photon is observed at the photon detectors. The electron patterns obtained with only one of the slits open are almost the same as before, when we did not observe the electron behind the slits. The surprise occurs with both slits open: there is no interference pattern. The small nudges given to the electrons in their collisions with the photons are always
sufficient to wash out the interference pattern completely! We can now say with certainty through which slit the electron went but now the electrons are behaving just like bullets. The observed pattern is just the sum of the patterns for slit 1 and slit 2 separately.

