PHYS 270-SPRING 2011
Dennis Papadopoulos

LECTURE \# 23

WAVE FUNCTIONS
PROBABILITY
WAVE PACKETS
UNCERTAINTY
CHAPTER 40

The Atom According to Bohr, who was (mostly) right

The Bohr Picture of the Sodium (Na 11) Atom

We said earlier that Bohr was mostly right...so where did he go wrong?

- Failed to account for why some spectral lines are stronger than others. (To determine transition probabilities, you need QUANTUM MECHANICS!) Auugh!

Niels Bohr - Louis de Broglie atom, 1924

- Treats an electron like a miniature planet...but is an electron a particle...or a wave?

Are electrons waves or particles?
Wave particle duality Quantum Mechanics

$$
\begin{array}{ll}
\frac{d^{2} \vec{r}}{d t^{2}}=\vec{F} / m & \begin{array}{l}
\text { Descriptor is particle } \\
\text { orbit. Law that controls it } \\
\text { is Newton's law }
\end{array}
\end{array}
$$

$$
\Psi(\vec{r}, t)
$$

- To introduce the wave function as the descriptor of particles in quantum mechanics.
- To provide the wave function with a probabilistic interpretation.
- To understand the wave function through pictorial and graphical exercises.
- To introduce the idea of normalization.
- To recognize the limitations on knowledge imposed by the Heisenberg uncertainty principle.

$$
\begin{gathered}
D_{1}=a \sin \left(k r_{1}-\omega t\right) \\
D_{2}=a \sin \left(k r_{1}-\omega t\right) \\
A(x)=D_{1}+D_{2} \\
A(x)=2 a \cos \left(\frac{\pi d x}{\lambda L}\right) \\
I(x)=C \cos ^{2}\left(\frac{\pi d x}{\lambda L}\right)
\end{gathered}
$$

Photon arrival positions
Light travels as a wave and interacts as a particle

Blindfolded dart throwing

Expected value of throwing a dice 99 times to get 1's and 4's?
$P($ in δx at $x)$ is Probability density

$P($ in $\delta \mathrm{x}$ at x$)=\lim \frac{\mathrm{N}(\text { in } \delta \mathrm{x} \text { at } \mathrm{x})}{\mathrm{N}_{\text {tot }}}, \mathrm{N}_{\text {tot }} \rightarrow \infty$
$N($ in $\delta \mathrm{x}$ at x$)=\mathrm{N} \times \mathrm{P}(\mathrm{x}, \delta \mathrm{x})$

$\operatorname{Prob}($ in δx at $x)=P(x) \delta x$

Probability is dimensionless. In one dimension probability density has dimensions of of $1 /$ length. E.g. per cm or per mm or per nm)

Energy E intercepted by an area H δx

WAVE PICTURE W/m²
$E(x, \delta x)=I(x) H \delta x \propto|A(x)|^{2} H \delta x$
PHOTON PICTURE

$$
N(\delta x, x)=\frac{E(x, \delta x)}{h f}=\frac{H}{h f} I(x) \delta x
$$

but
$P(\delta x, x)=\frac{N(\delta x, x)}{N_{\text {tot }}}=\left(H / h f N_{\text {tot }}\right)(\downarrow(x) \delta x$
Probability of detecting a photon at a particular point is directly proportional to the light square amplitude at that point

$$
\operatorname{Prob}(\text { in } \delta x \text { at } x) \propto|A(x)|^{2} \delta x
$$

Double A four times probability

Relates a particle like event to a continuous classical wave

Electron localized in the hole and indivisible. Clearly goes through slit \#1 or slit \#2
counts/min

Fig. 5-30, p. 182

Accumulated counts/min

What doesit tuean?

- A large number of electrons going through a double slit will produce an interference pattern, like a wave.
-However, each electron makes a single impact on a phosphorescent screen-like a particle.
- Electrons have indivisible (as far as we know) mass and electric charge, so if you suddenly closed one of the slits, you couldn't chop the electron in half-because it clearly is a particle.
- A large number of electrons fired at two simultaneously open slits, however, will eventually, once you have enough statistics, form an intereference pattern. Their cumulative impact is wavelike.
-This leads us to believe that the behavior of electrons is governed by probabilistic laws. --The wavefunction describes the probability that an electron will be found in a particular location.
(b) After 100 electrons

After 3000 electrons

(d) After 70000 electrons

Connecting the Wave and Photon

Views

The intensity of the light wave is correlated with the probability of detecting photons. That is, photons are more likely to be detected at those points where the wave intensity is high and less likely to be detected at those points where the wave intensity is low. The probability of detecting a photon at a particular point is directly proportional to the square of the light-wave amplitude function at that point:

$$
\operatorname{Prob}(\text { in } \delta x \text { at } x) \propto|A(x)|^{2} \delta x
$$

$\operatorname{Pr} o b(\delta x, x)=P(x) \delta x$

FIGURE 40.4 The probability density is analogous to the linear mass density.

Probability Density

We can define the probability density $P(x)$ such that

$$
\operatorname{Prob}(\text { in } \delta x \text { at } x)=P(x) \delta x
$$

In one dimension, probability density has SI units of m^{-1}. Thus the probability density multiplied by a length yields a dimensionless probability.
NOTE: $P(x)$ itself is not a probability. You must multiply the probability density by a length to find an actual probability.
The photon probability density is directly proportional to the square of the light-wave amplitude:

$$
\longrightarrow P(x) \propto|A(x)|^{2}
$$

Electron behave in a way similar to photons.

POSTULATE: There is a function $\Psi(x)$ for matter waves similar to the wave amplitude $A(x)$. Note that in em $A(x)$ is the electric field amplitude E.
$\Psi(\mathrm{x})$ is different.
Probability density is proportional to $|\Psi(\mathrm{x})|^{2}$
Just like photons $\mathrm{P}(\mathrm{x})^{\sim}|\mathrm{A}(\mathrm{x})|^{2}$

FIGURE 40.5 The double-slit experiment with electrons.

Electron arrival positions on detector

Wave Function

Electron behave in a way similar to photons.

POSTULATE: There is a function $\Psi(x)$ for matter waves similar to the wave amplitude $A(x)$. Note that in em $A(x)$ is the electric field amplitude E .
$\Psi(\mathrm{x})$ is different.
Probability density is proportional to $|\Psi(\mathrm{x})|^{2}$
Just like photons $\left.\mathrm{P}(\mathrm{x})^{\sim} \mathrm{IA}(\mathrm{x})\right|^{2}$

FIGURE 40.5 The double-slit experiment with electrons.

Electron arrival positions on detector

- Descriptor of a process that obeys some laws (eqs)
- Newtonian $x(t)$ obeys Newton's law
- $x(t)$ completely determined but $\Psi(x, t)$ not.
- In QM plays the role of $x(t)$
- Description passed all experimental tests
- It obeys the Schroedinger Equation
figure 40.6 The square of the wave function is the probability density for detecting the electron at various values of the position x.
(a) Wave function

(b) Probability density

The particle has zero probability of being detected where $|\psi(x)|^{2}=0$.

Normalization

- A photon or electron has to land somewhere on the detector after passing through an experimental apparatus.
- Consequently, the probability that it will be detected at some position is 100%.
- The statement that the photon or electron has to land somewhere on the x-axis is expressed mathematically as

$$
\int_{-\infty}^{\infty} P(x) d x=\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1
$$

- Any wave function must satisfy this normalization condition.

FIGURE 40.8 The area under the probability density curve is a probability.
(a)
$P(x)=|\psi(x)|^{2}$

The area under the curve between
x_{L} and x_{R} is the probability of finding the particle between x_{L} and x_{R}.

Fig. 6-1, p. 193

Suppose you roll a die 30 times. What is the expected numbers of 1's and 6's?

A. 12
B. 10
C. 8
D. 6
E. 4

Suppose you roll a die 30 times. What is the expected numbers of 1 's and 6's?

A. 12
B. 10
C. 8
D. 6
E. 4

The figure shows the detection of photons in an optical experiment. Rank in order, from largest to smallest, the square of the amplitude function of the electromagnetic wave at positions A, B, C, and D.

A. $D>C>B>A$
B. $A>B>C>D$
C. $A>B=D>C$
D. $C>B=D>A$

The figure shows the detection of photons in an optical experiment. Rank in order, from largest to smallest, the square of the amplitude function of the electromagnetic wave at positions $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

$$
\begin{aligned}
& \text { A. } D>C>B>A \\
& \text { B. } A>B>C>D \\
& \text { C. } A>B=D>C \\
& \text { D. } C>B=D>A
\end{aligned}
$$

This is the wave function of a neutron. At what value of x is the neutron most likely to be found?
A. $x=0$
B. $x=x_{\text {A }}$
C. $x=x_{B}$
D. $x=x_{C}$

This is the wave function of a neutron. At what value of x is the neutron most likely to be found?
A. $x=0$
B. $x=x_{\text {A }}$
C. $x=x_{B}$
D. $x=x_{C}$

The value of the constant a is

A. $a=0.5 \mathrm{~mm}^{-1 / 2}$.
B. $a=1.0 \mathrm{~mm}^{-1 / 2}$.
C. $a=2.0 \mathrm{~mm}^{-1 / 2}$.
D. $a=1.0 \mathrm{~mm}^{-1}$.
E. $a=2.0 \mathrm{~mm}^{-1}$.

The value of the constant a is

A. $a=0.5 \mathrm{~mm}^{-1 / 2}$.
B. $a=1.0 \mathrm{~mm}^{-1 / 2}$.
C. $a=2.0 \mathrm{~mm}^{-1 / 2}$.

$$
\begin{aligned}
& \frac{1}{2} a(2 \mathrm{~mm})=1 \\
& a=1 \mathrm{~mm}^{-1}
\end{aligned}
$$

The word "particle" in the phrase "wave-particle duality" suggests that this wave is somewhat localized.

Photon energy

$$
\mathrm{E}=\mathrm{hv}
$$

explains the experiment and shows that light behaves like particles.

How do we describe this mathematically?
...or this

...or this

How do we describe this mathematically?

Interefering waves, generally...

$$
\begin{aligned}
& y=y_{1}+y_{2}=A \cos \left(k_{1} x-\omega_{1} t\right)+A \cos \left(k_{2} x-\omega_{2} t\right) \\
& \Downarrow
\end{aligned}
$$

$$
y=2 A \cos \frac{1}{2}\left\{\left(k_{2}-k_{1}\right) x-\left(\omega_{2}-\omega_{1}\right) t\right\} \cdot \cos \frac{1}{2}\left\{\left(k_{1}+k_{2}\right) x-\left(\omega_{1}+\omega_{2}\right) t\right\}
$$

Can be interpreted as a sinusoidal envelope: $\quad 2 A \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)$
Modulating a high frequency wave within the envelope: $\cos \left[\frac{1}{2}\left(k_{1}+k_{2}\right) x-\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) t\right]$

© 2005 Brooks/Cole - Thomson
At constant value of x
$2 A \cos (\Delta \omega t / 2)=\quad 2 \operatorname{ses}\left(\frac{\Delta\left(\frac{\Delta x}{2} x-\frac{\Delta \omega_{t}}{2}\right)}{}\right.$
$=2 A \cos (\pi \Delta f t)$
$\pi \Delta f \Delta t=\pi$
$\Delta f \Delta t=1$

Fig. 5-18, p. 165

Look in space at any instant of time

$(1 / 2) \Delta k \Delta x=\pi$

Fig. 5-19, p. 166

Take many close frequencies instead of two close frequencies

Fig. 5-23, p. 172

Bandwidth

$\Delta f \Delta t \approx 1$

Figure 40.14 A single wave packet is the superposition of many component waves of similar wavelength and frequency.

Wave Packets

Suppose a single nonrepeating wave packet of duration Δt is created by the superposition of many waves that span a range of frequencies Δf.
Fourier analysis shows that for any wave packet

$$
\Delta f \Delta t \approx 1
$$

We have not given a precise definition of Δt and Δf for a general wave packet.
The quantity Δt is "about how long the wave packet lasts," while Δ f is "about the range of frequencies needing to be superimposed to produce this wave packet."

What minimum bandwidth must a medium have to transmit a 100-ns-long pulse?

A. 100 MHz
B. 0.1 MHz
$\Delta f \Delta t \approx 1$
C. 1 MHz
D. 10 MHz
E. 1000 MHz

What minimum bandwidth must a medium have to transmit a 100-ns-long pulse?

A. 100 MHz
B. 0.1 MHz
C. 1 MHz
D. 10 MHz
E. 1000 MHz

EXAMPLE 40.4 Creating radio-frequency pulses

A short-wave radio station brosadcasts at a frequency of 10.000 MHz . What is the range of frequencies of the waves that must be superimposed to broadcast a radio-wave pulse lasting $0.800 \mu \mathrm{~s}$?
mooes A pulse of radio waves is an electromagnetic wave packet. bence it must satisfy the relationship $\Delta / \Delta y=1$.

FIGURE 40.15 A pulse of radio waves.

VISUALIZE FIGURE 40.15 shows the pulse.
solve The period of a 10.000 MHz owcillation is $0.100 \mu \mathrm{~s}$. A puke $0.800 \mu s$ in duration is 8 owcillations of the wave. Although the station broadeasts at a nominal frequency of 10.000 MHz , this puke is not a pure 10.000 MHz ascillation. Instead, the pulke has been created by the superposition of many waves whose frequencies span

$$
\Delta f \approx \frac{1}{\Delta z}=\frac{1}{0.800 \times 10^{-5} \mathrm{~s}}=1.250 \times 10^{0} \mathrm{~Hz}=1.250 \mathrm{MHz}
$$

This range of frequencies will be centered at the 10.000 MHz broadcast frequency, so the waves that must be superimposed to create this pulse span the frequency range

$$
9.375 \mathrm{MHz} \leq f \leq 10.625 \mathrm{MHz}
$$

(c) 2005 Brooks/Cole - Thomson

Fig. 5-23, p. 172

Fig. 6.7 Wave packet with phase velocity twice the group velocity. The arrow travels at the phase velocity, following a point of constant phase for the domi nant wavelength. The cross travels at the group velocity with the packet as a whole.

Group velocity

Fig. 5-17, p. 164

FIGURE 40.12 History graph of a wave packet with duration Δt.

Wave packet duration Δt

The wave packet is localized, a particle-like characteristic.

FIGURE 40.16 Two wave packets with different Δt.
(a)

This wave packet has a large frequency uncertainty Δf.

This wave packet has a small frequency uncertainty Δf.

Which of these particles, A or B, can you locate more precisely?

A. A
B. B
C. Both can be located with same precision.

Which of these particles, A or B, can you locate more precisely?

A. A
B. B
C. Both can be located with same precision.

