Problem \# 2: Consider the currents illustrated in the Figure and assume that the straight wires are infinite long. (20)
a. Use the appropriate law (Faraday or Biot-Savart) to determine the magnetic field at the point P (both magnitude and direction) due to the straight wires 1 and 2. (8)
b. Use the appropriate law (Faraday or Biot-Savart) to determine the magnetic field at the point P (both magnitude and direction) due to the current flowing in the shape 3 (8)
c. What is the combined magnetic field at point P (magnitude and direction) due to the currents flowing in 1,2 and 3 (4)
(Express your answer in terms of I,R, θ, π and μ_{o})
For the problem consider a cylindrical coordinate system with its origin at P and the z - axis out of the page.
a. Apply Ampere's law $\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{s}}=\mu_{0} I$ or $2 \pi \rho \mathrm{~B}(\rho)=\mu_{0} I$ to currents 1 and 2 with $\rho_{1}=\mathrm{R} / 2$ and $\rho_{2}=\mathrm{R}$ to find $\overrightarrow{\mathrm{B}}_{1}($ at P$)=-\hat{\mathrm{e}}_{z} \frac{\mu_{o} I}{\pi \mathrm{R}}$ and $\overrightarrow{\mathrm{B}}_{2}(\mathrm{at} \mathrm{P})=-\hat{\mathrm{e}}_{z} \frac{\mu_{o} I}{2 \pi \mathrm{R}}$ so
$\overrightarrow{\mathrm{B}}_{1,2}($ at P$)=-\hat{\mathrm{e}}_{z} \frac{3 \mu_{o} I}{2 \pi \mathrm{R}}$
b. For long arms $\mathrm{d} \overrightarrow{\mathrm{s}} \times\left(-\hat{\mathrm{e}}_{\mathrm{r}}\right)=0$ they do not contribute to the B field at P . For the arc cuurrent
$d \vec{B}_{3}=\frac{\mu_{o} I}{4 \pi} \frac{\mathrm{~d} \overrightarrow{\mathrm{~s}} \times\left(\hat{e}_{\mathrm{r}}\right)}{\mathrm{R}^{2}}=\frac{\mu_{o} I}{4 \pi} \frac{(\mathrm{Rd} \theta) \hat{e}_{e} \times\left(-\hat{\mathrm{e}}_{\mathrm{r}}\right)}{\mathrm{R}^{2}}=-\hat{e}_{\mathrm{e}} \frac{\mu_{o} I}{4 \pi} \frac{R d \theta}{\mathrm{R}^{2}}$
$\vec{B}_{3}(\operatorname{atP})=-\hat{\mathrm{e}}_{\mathrm{z}} \frac{\mu_{o} I}{4 \pi R} \int_{0}^{\theta} d \theta=-\hat{\mathrm{e}}_{\mathrm{z}} \frac{\mu_{o} I}{R} \frac{\theta}{4 \pi}$
c. $\overrightarrow{\mathrm{B}}_{1,2,3}($ at P$)=-\hat{\mathrm{e}}_{\mathrm{z}} \frac{\mu_{o} I}{2 \pi \mathrm{R}}\left(3+\frac{\theta(\text { radians })}{2}\right)$

